Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
эритроциты.doc
Скачиваний:
38
Добавлен:
17.03.2015
Размер:
70.66 Кб
Скачать

Продолжительность жизни эритроцитов

Эритроциты у человека функционируют в крови максимум 120 дней, в среднем 60—90 дней. Старение эритроцитов связано с уменьшением образования в эритроците количества АТФ в ходе метаболизма глюкозы в этой клетке крови. Уменьшенное образование АТФ, ее дефицит нарушает в эритроците процессы, обеспечиваемые ее энергией, — восстановление формы эритроцитов, транспорт катионов через его мембрану и защиту компонентов эритроцитов от окисления, их мембрана теряет сиаловые кислоты. Старение эритроцитов вызывает изменения мембраны эритроцитов: из дискоцитов они превращаются в эхиноциты, т. е. эритроциты, на поверхности мембраны которых образуются многочисленные выступы, выросты. Причиной формирования эхиноцитов помимо уменьшения воспроизводства молекул АТФ в эритроците при старении клетки является усиленное образование лизолецитина в плазме крови, повышенное содержание в ней жирных кислот. Под влиянием перечисленных факторов изменяется соотношение поверхности внешнего и внутреннего слоев мембраны эритроцита за счет увеличения поверхности внешнего слоя, что и приводит к появлению выростов на мембране. По степени выраженности изменений мембраны и формы эритроцитов различают эхиноциты I, И, III классов и сфероэхиноциты I и II классов. При старении эритроцит последовательно проходит этапы превращения в эхиноцит III класса, теряет способность изменять и восстанавливать дисковидную форму, превращается в сфероэхиноцит и разрушается. Устранение дефицита глюкозы в эритроците легко возвращает эхиноциты I—II классов к форме дискоцита. Эхиноциты начинают появляться, например, в консервированной крови, сохраняемой в течение нескольких недель при 4°С, или в течение 24 ч, но при температуре 37 °С. Это связано с уменьшением образования АТФ внутри клетки, с появлением в плазме крови лизолецитина, образующегося под влиянием лецитин-холестерол-ацетилтранс-ферразы, ускоряющих старение клетки. Отмывание эхиноцитов в свежей плазме от содержащегося в ней лизолецитина или активация в них гликолиза, восстанавливающей уровень АТФ в клетке, уже через несколько минут возвращает им форму дискоцитов.

Разрушение эритроцитов

Гемолиз (от греческого слова haima - кровь, lysis - разрушение) - физиологическое разрушение клеток гемопоэза вследствие их естественного старения. Стареющие эритроциты становятся менее эластичными, вследствие чего разрушаются внутри сосудов (внутрисосудистый гемолиз) или же становятся добычей захватывающих и разрушающих их макрофагов в селезенке, купферовских клетках печени и в костном мозге (внесосудистый или внутриклеточный гемолиз). В норме наблюдается главным образом внутриклеточный гемолиз. При внутриклеточном гемолизе 80—90 % старых эритроцитов разрушается путем фрагментации (эритрорексиса) с последующим лизисом и эритрофагоцитозом в органах ретикулоэндотелиальной системы (ГЭС), преимущественно в селезенке, частично в печени. Нормальный эритроцит проходит синусы селезенки благодаря своему свойству изменять форму. По мере старения эритроциты теряют способность деформироваться, задерживаются в синусах селезенки и секвестрируются. Из поступившей в селезенку крови 90% эритроцитов проходит, не задерживаясь и не подвергаясь фильтрационному отбору. 10% эритроцитов попадает в систему сосудистых синусов и вынуждены выбираться из них, профильтровываясь через поры (фенестры), размер которых на порядок меньше (0,5-0,7 мкм), чем диаметр эритроцита. У старых эритроцитов изменяется ригидность мембраны, они застаиваются в синусоидах. В синусах селезенки снижен рН и концентрация глюкозы, поэтому при задержке в них эритроцитов, последние подвергаются метаболическому истощению. Макрофаги расположены по обеим сторонам синусов, их основная функция элиминировать старые эритроциты. В макрофагах РЭС заканчивается разрушение эритроцита (внутриклеточный гемолиз). В нормальном организме с помощью внутриклеточного гемолиза разрушается почти 90% эритроцитов. Механизм распада гемоглобина в клетках РЭС начинается с одновременного отщепления от него молекулы глобина и железа. В оставшемся тетрапиррольном кольце под действием фермента гемоксигеназы происходит образование биливердина, при этом гем теряет свою цикличность, образуя линейную структуру. На следующем этапе путем ферментативного восстановления биливердин-редуктазой происходит превращение биливердина в билирубин. Билирубин, образованный в РЭС, поступает в кровь, связывается с альбумином плазмы и в таком комплексе поглощается гепатоцитами, которые обладают селективной способностью захватывать билирубин из плазмы. До поступления в гепатоцит билирубин носит название неконъюгированный или непрямой. При высокой гипербилирубинемии небольшая часть может оставаться несвязанной с альбумином и фильтроваться в почках. Паренхиматозные клетки печени адсорбируют билирубин из плазмы с помощью транспортных систем, главным образом белков мембраны гепатоцита - Y (лигандин) и протеина Z, который включается лишь после насыщения Y. В гепатоците неконъюгированный билирубин подвергается конъюгации главным образом с глюкуроновой кислотой. Этот процесс катализируется ферментом уридилдифосфат(УДФ)-глюкуронилтрансферазой с образованием конъюгированного билирубина в виде моно- и диглюкуронидов. Активность фермента снижается при поражении гепатоцита. Она так же, как и лигандин, низкая у плода и новорожденных. Поэтому печень новорожденного не в состоянии переработать больших количеств билирубина распадающихся избыточных эритроцитов и развивается физиологическая желтуха. Конъюгированный билирубин выделяется из гепатоцита с желчью в виде комплексов с фосфолипидами, холестерином и солями желчных кислот. Дальнейшее преобразование билирубина происходит в желчных путях под влиянием дегидрогеназ с образованием уробилиногенов, мезобилирубина и других производных билирубина. Уробилиноген в двенадцатиперстной кишке всасывается энтероцитом и с током крови воротной вены возвращается в печень, где окисляется. Остальной билирубин и его производные поступают в кишечник, в котором превращается в стеркобилиноген. Основная масса стеркобилиногена в толстой кишке подвергается окислению в стеркобилин и выделяется с калом. Небольшая часть всасывается в кровь и выводится почками с мочой. Следовательно, билирубин экскретируется из организма в виде стеркобилина кала и уробилина мочи. По концентрации стеркобилина в кале можно судить об интенсивности гемолиза. От концентрации стеркобилина в кишечнике зависит и степень уробилинурии. Однако генез уробилинурии определяется также функциональной способностью печени к окислению уробилиногена. Поэтому увеличение уробилина в моче может свидетельствовать не только о повышенном распаде эритроцитов, но и о поражении гепатоцитов.

Лабораторными признаками повышенного внутриклеточного гемолиза являются: увеличение содержания в крови неконъюгированного билирубина, стеркобилина кала и уробилина мочи. Патологический внутриклеточный гемолиз может возникнуть при:

  • наследственной неполноценности мембраны эритроцита (эритроцитопатии);

  • нарушении синтеза гемоглобина и ферментов (гемоглобинопатии, энзимопатии);

  • изоиммунологическом конфликте по групповой и R-принадлежности крови матери и плода, избыточном количестве эритроцитов (физиологическая желтуха, эритробластоз новорожденного, эритремия - при количестве эритроцитов более 6-7 х 1012

Микросфероциты, овалоциты обладают пониженной механической и осмотической резистентностью. Толстые набухшие эритроциты агглютинируются и с трудом проходят венозные синусоиды селезенки, где задерживаются и подвергаются лизису и фагоцитозу.

Внутрисосудистый гемолиз - физиологический распад эритроцитов непосредственно в кровотоке. На его долю приходится около 10% всех гемолизирующихся клеток. Этому количеству разрушающихся эритроцитов соответствует от 1 до 4 мг свободного гемоглобина (феррогемоглобин, в котором Fе2+) в 100 мл плазмы крови. Освобожденный в кровеносных сосудах в результате гемолиза гемоглобин связывается в крови с белком плазмы - гаптоглобином (hapto - по гречески "связываю"), который относится к α2-глобулинам. Образующийся комплекс гемоглобин-гаптоглобин имеет Мм от 140 до 320 кДа, в то время как фильтр клубочков почек пропускает молекулы Мм меньше 70 кДа. Комплекс поглощается РЭС и разрушается ее клетками.

Способность гаптоглобина связывать гемоглобин препятствует экстраренальному его выведению. Гемоглобинсвязывающая емкость гаптоглобина составляет 100 мг в 100 мл крови (100 мг%). Превышение резервной гемоглобинсвязывающей емкости гаптоглобина (при концентрации гемоглобина 120-125 г/л) или снижение его уровня в крови сопровождается выделением гемоглобина через почки с мочой. Это имеет место при массивном внутрисосудистом гемолизе.

Поступая в почечные канальцы, гемоглобин адсорбируется клетками почечного эпителия. Реабсорбированный эпителием почечных канальцев гемоглобин разрушается in situ с образованием ферритина и гемосидерина. Возникает гемосидероз почечных канальцев. Эпителиальные клетки почечных канальцев, нагруженные гемосидерином, слущиваются и выделяются с мочой. При гемоглобинемии, превышающей 125-135 мг в 100 мл крови, канальцевая реабсорбция оказывается недостаточной и в моче появляется свободный гемоглобин.

Между уровнем гемоглобинемии и появлением гемоглобинурии не существует четкой зависимости. При постоянной гемоглобинемии гемоглобинурия может возникать при более низких цифрах свободного гемоглобина плазмы. Снижение концентрации гаптоглобина в крови, которое возможно при длительном гемолизе в результате его потребления, может вызывать гемоглобинурию и гемосидеринурию при более низких концентрациях свободного гемоглобина крови. При высокой гемоглобинемии часть гемоглобина окисляется до метгемоглобина (ферригемоглобина). Возможен распад гемоглобина в плазме до тема и глобина. В этом случае гем связывается альбумином или специфическим белком плазмы - гемопексином. Комплексы затем так же, как гемоглобин-гаптоглобин, подвергаются фагоцитозу. Строма эритроцитов поглощается и разрушается макрофагами селезенки или задерживается в концевых капиллярах периферических сосудов.

Лабораторные признаки внутрисосудистого гемолиза:

  • гемоглобинемия,

  • гемоглобинурия,

  • гемосидеринурия

Патологический внутрисосудистый гемолиз может возникнуть при токсических, механических, радиационных, инфекционных, иммуно- и аутоиммунных повреждениях мембраны эритроцитов, дефиците витаминов, паразитах крови. Усиленный внутрисосудистый гемолиз наблюдается при пароксизмальной ночной гемоглобинурии, эритроцитарных энзимопатиях, паразитозах, в частности малярии, приобретенных аутоиммунных гемолитических анемиях, пострансфузионных осложнениях, несовместимости по групповому или резус-фактору, переливании донорской крови с высоким титром антиэритроцитарных антител, которые появляются при инфекциях, сепсисе, паренхиматозном поражении печени, беременности и других заболеваниях.