- •Вопросы для подготовки к гэ направление обучения – утс Теория автоматического управления
- •Принципы управления. Классификация сау.
- •Объект управления. Алгоритмы и законы регулирования.
- •Математическое описание сау. Модели вход-выход.
- •Типовые воздействия в сау и реакции на них.
- •Математическое описание типовых звеньев сау.
- •Соединения звеньев сау. Математическое описание соединений линейных звеньев сау.
- •Многомерные сау. Модели вход-выход многомерных линейных сау.
- •Математическое описание сау в пространстве состояний.
- •Постановка задач анализа и синтеза сау.
- •Понятие устойчивости сау. Условие устойчивости линейных сау.
- •Устойчивость линейных сау. Алгебраические критерии устойчивости.
- •Устойчивость линейных сау. Частотные критерии устойчивости.
- •Определение устойчивости замкнутой сау по частотным характеристикам разомкнутой сау. Запасы устойчивости по фазе и по усилению.
- •Критерии качества сау.
- •2 Критерия качества:
- •Коррекция сау. Способы коррекции линейных сау.
- •Основные свойства линейных сау. Управляемость.
- •Управляемость.
- •Основные свойства линейных сау. Наблюдаемость.
- •Дискретные сау. Классификация дискретных сау.
- •Математическое описание линейных дискретных сау.
- •Основные понятия и особенности нелинейных сау. Классификация нелинейностей. Типовые нелинейности. Перепроверить
- •Методы линеаризации нелинейных сау.
- •Электротехника и электроника
- •Чистые и примесные полупроводники, формирование p-n перехода.
- •Стабилитрон. Вах стабилитрона. Параметрические стабилизаторы напряжения: устройство, принцип действия.
- •Мостовая схема двухполупериодного выпрямителя: принцип действия, диаграммы работы.
- •Компенсационные стабилизаторы напряжения непрерывного действия, схема, принцип действия.
- •Усилительный каскад, собранный по схеме с общим эмиттером (оэ): схема, назначение элементов, расчет входного сопротивления, коэффициентов усиления Кр, Ku, Ki.
- •Усилительный каскад, собранный по схеме с общим коллектором (ок): схема, назначение элементов, расчет входного сопротивления, коэффициентов усиления Кр, Ku, Ki.
- •Полевой транзистор с p-n переходом: устройство, принцип действия, вах.
- •Усилительный каскад, собранный на полевом транзисторе по схеме с общим истоком (ои), назначение элементов.
- •Моп (мдп) транзисторы со встроенным каналом: устройство, принцип действия, вах.
- •Виды межкаскадных связей. Непосредственная и емкостная связь: схемы, достоинства, недостатки.
- •Виды межкаскадных связей. Трансформаторная и оптическая связь: схемы, достоинства, недостатки.
- •Усилители мощности в режимах «а», «в»: схемы, достоинства, недостатки.
- •Усилители мощности в режимах «c», «d»: схемы, достоинства, недостатки.
- •Ключевой режим работы биполярного транзистора: схема с общим эмиттером (оэ), диаграммы работы.
- •Мультивибраторы: типовая схема на таймере 1006 ви1, диаграммы работы, расчет элементов.
- •Двухтактный усилитель мощности: устройство, принцип действия, диаграммы работы.
- •Операционные усилители: инвертирующий и неинвертирующий усилитель.
- •Операционные усилители: повторитель напряжения, сумматор.
- •Метрология и измерительная техника
- •Погрешности измерений: абсолютная, относительная, приведенная. Аддитивная и мультипликативная погрешность, полоса распределения.
- •Нормирование погрешностей средств измерения.
- •Случайная погрешность измерения. Законы распределения, доверительный интервал.
- •Магнитоэлектрические омметры, особенности измерения больших и малых сопротивлений.
- •Мосты постоянного и переменного тока, области применения, схема, условие баланса.
- •Цифровые устройства автоматики и вычислительной техники
- •Логические элементы. Параметры логических элементов.
- •Коэффициент разветвления по выходу (нагрузочная способность) – это максимальное количество входов элементов той же серии на которую можно нагрузить выход логического элемента.
- •Серии интегральных схем логических элементов. Типы выходных каскадов.
- •Типовые комбинационные схемы. Назначение, принципы построения, примеры использования.
- •Регистры: классификация, принципы построения, выполняемые функции, примеры использования.
- •Счетчики: назначение, классификация, принципы построения, режимы работы примеры использования.
- •Полупроводниковая память: назначение, классификация. Временные диаграммы работы зу.
- •Вычислительные машины, системы и сети
- •Представление информации в цвм и вс.
- •Принцип работы эвм. Программная модель универсального микропроцессора. Сегментация памяти.
- •Система памяти эвм. Особенности памяти типа стек. Назначение и принцип действия кэш-памяти.
- •Общие замечания
- •Целостность данных
- •Система команд универсального микропроцессора.
- •Видеосистема компьютера.
- •Обмен информацией между процессором, памятью и внешними устройствами.
- •Интерфейсы ввода-вывода: определение, классификация. Внутренний интерфейс. Примеры реализации.
- •Интерфейсы ввода-вывода: определение, классификация. Внешний интерфейс. Примеры реализации.
- •Программно-логическое управление в микропроцессорных системах
- •Классификация и особенности архитектуры современных микропроцессоров.
- •Обобщенная структура микропроцессорной информационной измерительно-управляющей системы. Схемы построения многоканальных измерительных систем.
- •Микроконтроллеры: назначение, особенности архитектуры. Типовые периферийные устройства.
- •Программируемые логические контроллеры: назначение, классификация, типовые функции.
- •Системы программирования на языках мэк.
- •Программирование и основы алгоритмизации
- •Поколения языков программирования. Уровни языков программирования.
- •Трансляторы: назначение, классификация, примеры. Этапы прохождения программ на эвм. Результаты, формируемые каждым этапом.
- •Жизненный цикл программного обеспечения. Составляющие процесса жизненного цикла программного обеспечения. Каскадная (водопадная) модель жизненного цикла программы.
- •Типизация данных. Система типов в языке программирования высокого уровня.
- •Технология программирования вычислительных задач (модульное и структурное программирование). Пример использования.
- •Типовые алгоритмы, используемые в программировании. Средства реализации типовых алгоритмов в языке программирования высокого уровня.
- •Организация ввода-вывода. Средства работы с файлами в языке программирования высокого уровня.
- •Понятие подпрограммы. Виды подпрограмм, их отличительные особенности. Способы передачи параметров.
- •Динамические переменные. Операция разыменования. Размещение/освобождение динамических переменных.
- •Модуль и его структура. Основные типы модулей в инструментальной среде разработки программного обеспечения на языке высокого уровня.
- •Фундаментальные принципы объектно-ориентированного программирования. Понятие класса, объекта. Реализация класса в языке программирования высокого уровня.
- •Информационные сети и телекоммуникации
- •Понятие о способах коммутации в распределенных вычислительных системах (коммутация каналов, коммутация пакетов).
- •Структуры распределенных вычислительных систем (топология, физические и логические элементы сетей эвм).
- •Модель взаимодействия открытых систем (Open Systems Interconnection, osi).
- •Стек протоколов tcp/ip.
- •Виртуальная локальная сеть.
- •Коммутируемый Ethernet (коммутаторы).
- •Протокол связующего дерева (Spanning Tree Protocol, stp).
- •Модуляция. Виды модуляции. Частотный спектр сигнала (понятие).
- •Понятие ip адреса и маски сети.
- •Dhcp (Dynamic Host Configuration Protocol) – протокол динамической конфигурации хостов.
- •Arp (Address Resolution Protocol) – протокол разрешения адресов.
- •Icmp (Internet Control Message Protocol) – протокол межсетевых управляющих сообщений.
- •Фрагментация пакетов (назначение, способ реализации).
Виртуальная локальная сеть.
VLAN (Virtual Local Area Network) — логическая ("виртуальная") локальная компьютерная сеть, представляет собой группу хостов с общим набором требований, которые взаимодействуют так, как если бы они были подключены к широковещательному домену, независимо от их физического местонахождения. VLAN имеет те же свойства, что и физическая локальная сеть, но позволяет конечным станциям группироваться вместе, даже если они не находятся в одной физической сети.
На практике основная цель VLAN — ограничить хождение широковещательных пакетов, что особенно актуально в больших локальных сетях без промежуточных маршрутизаторов.
Интерфейсы находящиеся в разных VLAN-ах, невидимы друг для друга на канальном уровне, даже если они подключены к одному коммутатору, и связь между этими устройствами возможна только на сетевом и более высоких уровнях. В то-же время группа интерфейсов на одном VLAN-е может взаимодействовать друг с другом на канальном уровне, хотя они физически подключены к разным коммутаторам.
Использование механизма виртуальных локальных сетей позволяет строить изолированные на канальном уровне локальные сети без привязки к их физической коммутации. Связь между этими сетями может осуществляться на сетевом уровне или не осуществляться вообще.
Использование VLAN-ов позволяет:
Обеспечить гибкость внедрения. VLAN являются эффективным способом группировки сетевых пользователей в виртуальные рабочие группы, несмотря на их физическое размещение в сети.
Обеспечить возможность контроля широковещательных сообщений, что увеличивает полосу пропускания, доступную для пользователя и уменьшить вред от широковещательных штормов. Каждый VLAN — это отдельный широковещательный домен.
Усилить безопасность сети, определив с помощью фильтров, настроенных на коммутаторе или маршрутизаторе, политику взаимодействия пользователей из разных виртуальных сетей. С VLAN политики можно применять к целым подсетям, а не к отдельному устройству. Кроме того, переход из одного VLAN в другой предполагает прохождение через устройство 3 уровня, на котором, как правило, применяются политики, разрешающие или запрещающие доступ из VLAN в VLAN.
Коммутируемый Ethernet (коммутаторы).
На сегодняшний день это наиболее оптимальная альтернатива, которая полностью исключает возможность появления коллизий и связанных с ними проблем.
Суть коммутируемого Ethernet в том, что вместо хаба используется свич (коммутатор) – устройство, которое работает на канальном уровне и обладает полносвязной топологией, что обеспечивает соединение всех портов друг с другом напрямую по технологии точка-точка.
Таблицы коммутации есть в каждом таком устройстве. Они описывают, какие компьютеры к какому порту свича подключены. Чтобы узнать MAC-адреса, используется алгоритм обратного обучения, а для передачи данных – алгоритм прозрачного моста.
Простейшая таблица коммутации:
Алгоритм обратного обучения работает таким образом: коммутатор принимает кадры, анализирует заголовок и извлекает из него адрес отправителя. Таким образом, к определенному порту подключен компьютер с конкретным MAC-адресом.
Прозрачный мост не требует настройки и так назван за счет того, что он не заметен для сетевых устройств (у него нет своего MAC-адреса). Коммутатор принимает кадр, анализирует заголовок, извлекает из него адрес получателя и сопоставляет его с таблицей коммутации, определяя порт, к которому подключено устройство. Таким образом, кадр передается на конкретный порт получателя, а не на все порты, как в случае с концентратором. Если же адрес не найден в таблице, коммутатор работает так же, как и хаб.
Внешне концентратор (для классического Ethernet) и коммутатор почти не отличаются, но внутренее отличие очень большое: концентратор использует топологию “общая шина”, коммутатор же – полносвязную топологию. Концентратор работает на физическом уровне, он передает электрические сигналы, которые поступают на один порт, на все порты. Коммутатор работает на канальном уровне: он анализирует заголовок канального уровня, извлекает адрес получателя и передает данные только на тот порт, к которому подключен получатель.
