
- •Вопросы для подготовки к гэ направление обучения – утс Теория автоматического управления
- •Принципы управления. Классификация сау.
- •Объект управления. Алгоритмы и законы регулирования.
- •Математическое описание сау. Модели вход-выход.
- •Типовые воздействия в сау и реакции на них.
- •Математическое описание типовых звеньев сау.
- •Соединения звеньев сау. Математическое описание соединений линейных звеньев сау.
- •Многомерные сау. Модели вход-выход многомерных линейных сау.
- •Математическое описание сау в пространстве состояний.
- •Постановка задач анализа и синтеза сау.
- •Понятие устойчивости сау. Условие устойчивости линейных сау.
- •Устойчивость линейных сау. Алгебраические критерии устойчивости.
- •Устойчивость линейных сау. Частотные критерии устойчивости.
- •Определение устойчивости замкнутой сау по частотным характеристикам разомкнутой сау. Запасы устойчивости по фазе и по усилению.
- •Критерии качества сау.
- •2 Критерия качества:
- •Коррекция сау. Способы коррекции линейных сау.
- •Основные свойства линейных сау. Управляемость.
- •Управляемость.
- •Основные свойства линейных сау. Наблюдаемость.
- •Дискретные сау. Классификация дискретных сау.
- •Математическое описание линейных дискретных сау.
- •Основные понятия и особенности нелинейных сау. Классификация нелинейностей. Типовые нелинейности. Перепроверить
- •Методы линеаризации нелинейных сау.
- •Электротехника и электроника
- •Чистые и примесные полупроводники, формирование p-n перехода.
- •Стабилитрон. Вах стабилитрона. Параметрические стабилизаторы напряжения: устройство, принцип действия.
- •Мостовая схема двухполупериодного выпрямителя: принцип действия, диаграммы работы.
- •Компенсационные стабилизаторы напряжения непрерывного действия, схема, принцип действия.
- •Усилительный каскад, собранный по схеме с общим эмиттером (оэ): схема, назначение элементов, расчет входного сопротивления, коэффициентов усиления Кр, Ku, Ki.
- •Усилительный каскад, собранный по схеме с общим коллектором (ок): схема, назначение элементов, расчет входного сопротивления, коэффициентов усиления Кр, Ku, Ki.
- •Полевой транзистор с p-n переходом: устройство, принцип действия, вах.
- •Усилительный каскад, собранный на полевом транзисторе по схеме с общим истоком (ои), назначение элементов.
- •Моп (мдп) транзисторы со встроенным каналом: устройство, принцип действия, вах.
- •Виды межкаскадных связей. Непосредственная и емкостная связь: схемы, достоинства, недостатки.
- •Виды межкаскадных связей. Трансформаторная и оптическая связь: схемы, достоинства, недостатки.
- •Усилители мощности в режимах «а», «в»: схемы, достоинства, недостатки.
- •Усилители мощности в режимах «c», «d»: схемы, достоинства, недостатки.
- •Ключевой режим работы биполярного транзистора: схема с общим эмиттером (оэ), диаграммы работы.
- •Мультивибраторы: типовая схема на таймере 1006 ви1, диаграммы работы, расчет элементов.
- •Двухтактный усилитель мощности: устройство, принцип действия, диаграммы работы.
- •Операционные усилители: инвертирующий и неинвертирующий усилитель.
- •Операционные усилители: повторитель напряжения, сумматор.
- •Метрология и измерительная техника
- •Погрешности измерений: абсолютная, относительная, приведенная. Аддитивная и мультипликативная погрешность, полоса распределения.
- •Нормирование погрешностей средств измерения.
- •Случайная погрешность измерения. Законы распределения, доверительный интервал.
- •Магнитоэлектрические омметры, особенности измерения больших и малых сопротивлений.
- •Мосты постоянного и переменного тока, области применения, схема, условие баланса.
- •Цифровые устройства автоматики и вычислительной техники
- •Логические элементы. Параметры логических элементов.
- •Коэффициент разветвления по выходу (нагрузочная способность) – это максимальное количество входов элементов той же серии на которую можно нагрузить выход логического элемента.
- •Серии интегральных схем логических элементов. Типы выходных каскадов.
- •Типовые комбинационные схемы. Назначение, принципы построения, примеры использования.
- •Регистры: классификация, принципы построения, выполняемые функции, примеры использования.
- •Счетчики: назначение, классификация, принципы построения, режимы работы примеры использования.
- •Полупроводниковая память: назначение, классификация. Временные диаграммы работы зу.
- •Вычислительные машины, системы и сети
- •Представление информации в цвм и вс.
- •Принцип работы эвм. Программная модель универсального микропроцессора. Сегментация памяти.
- •Система памяти эвм. Особенности памяти типа стек. Назначение и принцип действия кэш-памяти.
- •Общие замечания
- •Целостность данных
- •Система команд универсального микропроцессора.
- •Видеосистема компьютера.
- •Обмен информацией между процессором, памятью и внешними устройствами.
- •Интерфейсы ввода-вывода: определение, классификация. Внутренний интерфейс. Примеры реализации.
- •Интерфейсы ввода-вывода: определение, классификация. Внешний интерфейс. Примеры реализации.
- •Программно-логическое управление в микропроцессорных системах
- •Классификация и особенности архитектуры современных микропроцессоров.
- •Обобщенная структура микропроцессорной информационной измерительно-управляющей системы. Схемы построения многоканальных измерительных систем.
- •Микроконтроллеры: назначение, особенности архитектуры. Типовые периферийные устройства.
- •Программируемые логические контроллеры: назначение, классификация, типовые функции.
- •Системы программирования на языках мэк.
- •Программирование и основы алгоритмизации
- •Поколения языков программирования. Уровни языков программирования.
- •Трансляторы: назначение, классификация, примеры. Этапы прохождения программ на эвм. Результаты, формируемые каждым этапом.
- •Жизненный цикл программного обеспечения. Составляющие процесса жизненного цикла программного обеспечения. Каскадная (водопадная) модель жизненного цикла программы.
- •Типизация данных. Система типов в языке программирования высокого уровня.
- •Технология программирования вычислительных задач (модульное и структурное программирование). Пример использования.
- •Типовые алгоритмы, используемые в программировании. Средства реализации типовых алгоритмов в языке программирования высокого уровня.
- •Организация ввода-вывода. Средства работы с файлами в языке программирования высокого уровня.
- •Понятие подпрограммы. Виды подпрограмм, их отличительные особенности. Способы передачи параметров.
- •Динамические переменные. Операция разыменования. Размещение/освобождение динамических переменных.
- •Модуль и его структура. Основные типы модулей в инструментальной среде разработки программного обеспечения на языке высокого уровня.
- •Фундаментальные принципы объектно-ориентированного программирования. Понятие класса, объекта. Реализация класса в языке программирования высокого уровня.
- •Информационные сети и телекоммуникации
- •Понятие о способах коммутации в распределенных вычислительных системах (коммутация каналов, коммутация пакетов).
- •Структуры распределенных вычислительных систем (топология, физические и логические элементы сетей эвм).
- •Модель взаимодействия открытых систем (Open Systems Interconnection, osi).
- •Стек протоколов tcp/ip.
- •Виртуальная локальная сеть.
- •Коммутируемый Ethernet (коммутаторы).
- •Протокол связующего дерева (Spanning Tree Protocol, stp).
- •Модуляция. Виды модуляции. Частотный спектр сигнала (понятие).
- •Понятие ip адреса и маски сети.
- •Dhcp (Dynamic Host Configuration Protocol) – протокол динамической конфигурации хостов.
- •Arp (Address Resolution Protocol) – протокол разрешения адресов.
- •Icmp (Internet Control Message Protocol) – протокол межсетевых управляющих сообщений.
- •Фрагментация пакетов (назначение, способ реализации).
Типовые комбинационные схемы. Назначение, принципы построения, примеры использования.
Типовые узлы ЭВМ.
Удобной мат. Моделью при решении задач анализа и синтеза любой структурной единицы ЭВМ является цифровой автомат (любое устройство обработки информации в цифровом виде).
ЦА без памяти.
ЦА с памятью (конечные или последовательные).
Любой ЦА является дискретным уст-вом, т.е. входные и выходные сигналы изменяются в дискретные моменты времени. Для отображения этого факта надо использовать дискретное время.
КЛА
В них выходные сигналы в некоторый момент времени ti однозначно определяются входными сигналами в совпадающие моменты времени. Для мат. Описания КЛС достаточно аппарата логики, при этом каждый выход КЛС описывается логической функцией, число аргументов которой равно числу логических форм.
, где xj
– логическая переменная, модулир. сигнал
на i-том
входе, yj
- на выходе.
Чтобы определить логическую структуру
КЛС достаточно рассмотреть каждый выход
КЛС как независимую логическую
функцию.Однако, минимизация отдельных
выходов не гарантирует минимизацию КЛС
в целом. Для поиска минимальной структуры
КЛС надо учитывать зависимость между
выходами КЛС.
Если лог. ф-ии имеют общие члены, то такие ф-ии можно упростить путем введения вспомогательных переменных.
,
,
.
Заменим
.
Быстродействие хуже, т.к. сначала
считается y,
а потом все остальное. Увеличивается
число последовательно соединенных ЛЭ.
Выражение одной логической функции через другую.
Пример. КЛС имеет два выхода.
,
Рассмотрим S как лог. ф-ию от 4-х переменных x,y,z и p. Из 16 наборов переменных 8 старших наборов явл. запрещенными, т.е они не могут иметь место в реальном устр-ве.
Цифровой компаратор, дешифратор, мультиплексор:
Компаратор:
сравнение кодов.
Применение: делитель с переменным коэффициентом деления.
Дешифратор: устройство преобразует входной 2-ый код в в позиционный (десятичный)
ДС
Мультиплексор – демультиплексор(наоборот): объединяет несколько входов на один выход.

Применение: мультиплексированные линии адреса - данных.
Мультиплексор -- комбинационное устройство, предназначенное для подключения одного из n информационных входов к единственному выходу. Помимо информационных входов мультиплексор имеет адресные входы, на которые подается в параллельном коде адресное слово. Между количеством информационных входов и разрядностью адресного слова существует однозначное соотношение , где: n -- количество информационных входов, k -- количество разрядов адресного слова
Дешифратор относится к преобразователем кодов.
В зависимости от входного двоичного кода на входе дешифратора возбуждается одна и только одна из выходных цепей.
Двоичные шифраторы выполняют операцию, обратную по отношению к дешифратору. При возбуждении одного из входов шифратора на его на его выходе формируется двоичный код номер возбужденноё входной линии.
Мультиплексоры осуществляют подключение одного из входных каналов к выходному под управлением управляющего слова. Коммутаторы (устройства сравнения) определяют отношение между двумя словами.
Триггеры. Разновидности и логика работы триггеров. Динамические и с
татические входы триггеров.
Т
риггер
– элементарные автоматы, содержащие
собственно элемент памяти(фиксатор) и
схему управления. Фиксатор сроится на
двух инверторах, связанных друг с другом
накрест, так что выход одного соединяется
со входа другого. Если на входе инвертора
1 имеется логический 0, то он обеспечивает
на входе инвертора 2 логическую 1, то же
согласование сигналов имеет место и
для второго состояния, когда инвертор
1 находится в логической единице, а
инвертор 2 в 0.
Такое соединение дает цепь с двумя устойчивыми состояниями.
Классификация триггеров проводится по признакам логического функционирования и по способу записи информации. По логическому функционированию различают триггеры типов RS,D,T,JK и др.
Кроме того, используются комбинированные триггеры, в которых совмещается одновременно несколько типов.
Триггеры типа RS имеют 2 входа – установки в единицу (S) и установки в 0 (R).
Триггеры типа D(задержка) имеет один вход. Его состояние повторяет входной сигнал, но с задержкой, определяемой тактовым сигналом.
Триггеры типа Т изменяет своё состояние каждый раз при поступлении входного сигнала. Имеет один вход и называется триггером со счётным входом или счётным триггером.
Триггер типа JK универсален, он имеет входы установки (J) и сброса (K) подобные входам триггера SR. В отличие от последнего допускает ситуацию с одновременной подачей сигналов на оба эти входа (J=K=1). В этом режиме работает как счётный триггер относительно третьего (тактового) входа.
В комбинированных триггерах совмещается несколько режимов.
По способу записи информации различают асинхронный и синхронный триггеры (не тактируемые и тактируемые)
В не тактируемых переход в новое состояние вызывается непосредственно изменением входных информационных сигналов.
В тактируемых, имеющих специальный вход, переход происходит только при подаче на этот вход тактовых сигналов.
По способу восприятия тактовых сигналов триггеры делятся на управляемые уровнем и управляемые фронтов.
Динамический вход может быть прямым и инверсным. Прямое динамическое управление означает разрешение на переключении при изменении тактового сигнала с нулевого значения на единичное, инверсное – при изменении тактового сигнала с единичного значения на нулевое.
Уравнение триггера:
JK:
Qn
= JQ
QK
D:
Qn
= D