
- •Вопросы для подготовки к гэ направление обучения – утс Теория автоматического управления
- •Принципы управления. Классификация сау.
- •Объект управления. Алгоритмы и законы регулирования.
- •Математическое описание сау. Модели вход-выход.
- •Типовые воздействия в сау и реакции на них.
- •Математическое описание типовых звеньев сау.
- •Соединения звеньев сау. Математическое описание соединений линейных звеньев сау.
- •Многомерные сау. Модели вход-выход многомерных линейных сау.
- •Математическое описание сау в пространстве состояний.
- •Постановка задач анализа и синтеза сау.
- •Понятие устойчивости сау. Условие устойчивости линейных сау.
- •Устойчивость линейных сау. Алгебраические критерии устойчивости.
- •Устойчивость линейных сау. Частотные критерии устойчивости.
- •Определение устойчивости замкнутой сау по частотным характеристикам разомкнутой сау. Запасы устойчивости по фазе и по усилению.
- •Критерии качества сау.
- •2 Критерия качества:
- •Коррекция сау. Способы коррекции линейных сау.
- •Основные свойства линейных сау. Управляемость.
- •Управляемость.
- •Основные свойства линейных сау. Наблюдаемость.
- •Дискретные сау. Классификация дискретных сау.
- •Математическое описание линейных дискретных сау.
- •Основные понятия и особенности нелинейных сау. Классификация нелинейностей. Типовые нелинейности. Перепроверить
- •Методы линеаризации нелинейных сау.
- •Электротехника и электроника
- •Чистые и примесные полупроводники, формирование p-n перехода.
- •Стабилитрон. Вах стабилитрона. Параметрические стабилизаторы напряжения: устройство, принцип действия.
- •Мостовая схема двухполупериодного выпрямителя: принцип действия, диаграммы работы.
- •Компенсационные стабилизаторы напряжения непрерывного действия, схема, принцип действия.
- •Усилительный каскад, собранный по схеме с общим эмиттером (оэ): схема, назначение элементов, расчет входного сопротивления, коэффициентов усиления Кр, Ku, Ki.
- •Усилительный каскад, собранный по схеме с общим коллектором (ок): схема, назначение элементов, расчет входного сопротивления, коэффициентов усиления Кр, Ku, Ki.
- •Полевой транзистор с p-n переходом: устройство, принцип действия, вах.
- •Усилительный каскад, собранный на полевом транзисторе по схеме с общим истоком (ои), назначение элементов.
- •Моп (мдп) транзисторы со встроенным каналом: устройство, принцип действия, вах.
- •Виды межкаскадных связей. Непосредственная и емкостная связь: схемы, достоинства, недостатки.
- •Виды межкаскадных связей. Трансформаторная и оптическая связь: схемы, достоинства, недостатки.
- •Усилители мощности в режимах «а», «в»: схемы, достоинства, недостатки.
- •Усилители мощности в режимах «c», «d»: схемы, достоинства, недостатки.
- •Ключевой режим работы биполярного транзистора: схема с общим эмиттером (оэ), диаграммы работы.
- •Мультивибраторы: типовая схема на таймере 1006 ви1, диаграммы работы, расчет элементов.
- •Двухтактный усилитель мощности: устройство, принцип действия, диаграммы работы.
- •Операционные усилители: инвертирующий и неинвертирующий усилитель.
- •Операционные усилители: повторитель напряжения, сумматор.
- •Метрология и измерительная техника
- •Погрешности измерений: абсолютная, относительная, приведенная. Аддитивная и мультипликативная погрешность, полоса распределения.
- •Нормирование погрешностей средств измерения.
- •Случайная погрешность измерения. Законы распределения, доверительный интервал.
- •Магнитоэлектрические омметры, особенности измерения больших и малых сопротивлений.
- •Мосты постоянного и переменного тока, области применения, схема, условие баланса.
- •Цифровые устройства автоматики и вычислительной техники
- •Логические элементы. Параметры логических элементов.
- •Коэффициент разветвления по выходу (нагрузочная способность) – это максимальное количество входов элементов той же серии на которую можно нагрузить выход логического элемента.
- •Серии интегральных схем логических элементов. Типы выходных каскадов.
- •Типовые комбинационные схемы. Назначение, принципы построения, примеры использования.
- •Регистры: классификация, принципы построения, выполняемые функции, примеры использования.
- •Счетчики: назначение, классификация, принципы построения, режимы работы примеры использования.
- •Полупроводниковая память: назначение, классификация. Временные диаграммы работы зу.
- •Вычислительные машины, системы и сети
- •Представление информации в цвм и вс.
- •Принцип работы эвм. Программная модель универсального микропроцессора. Сегментация памяти.
- •Система памяти эвм. Особенности памяти типа стек. Назначение и принцип действия кэш-памяти.
- •Общие замечания
- •Целостность данных
- •Система команд универсального микропроцессора.
- •Видеосистема компьютера.
- •Обмен информацией между процессором, памятью и внешними устройствами.
- •Интерфейсы ввода-вывода: определение, классификация. Внутренний интерфейс. Примеры реализации.
- •Интерфейсы ввода-вывода: определение, классификация. Внешний интерфейс. Примеры реализации.
- •Программно-логическое управление в микропроцессорных системах
- •Классификация и особенности архитектуры современных микропроцессоров.
- •Обобщенная структура микропроцессорной информационной измерительно-управляющей системы. Схемы построения многоканальных измерительных систем.
- •Микроконтроллеры: назначение, особенности архитектуры. Типовые периферийные устройства.
- •Программируемые логические контроллеры: назначение, классификация, типовые функции.
- •Системы программирования на языках мэк.
- •Программирование и основы алгоритмизации
- •Поколения языков программирования. Уровни языков программирования.
- •Трансляторы: назначение, классификация, примеры. Этапы прохождения программ на эвм. Результаты, формируемые каждым этапом.
- •Жизненный цикл программного обеспечения. Составляющие процесса жизненного цикла программного обеспечения. Каскадная (водопадная) модель жизненного цикла программы.
- •Типизация данных. Система типов в языке программирования высокого уровня.
- •Технология программирования вычислительных задач (модульное и структурное программирование). Пример использования.
- •Типовые алгоритмы, используемые в программировании. Средства реализации типовых алгоритмов в языке программирования высокого уровня.
- •Организация ввода-вывода. Средства работы с файлами в языке программирования высокого уровня.
- •Понятие подпрограммы. Виды подпрограмм, их отличительные особенности. Способы передачи параметров.
- •Динамические переменные. Операция разыменования. Размещение/освобождение динамических переменных.
- •Модуль и его структура. Основные типы модулей в инструментальной среде разработки программного обеспечения на языке высокого уровня.
- •Фундаментальные принципы объектно-ориентированного программирования. Понятие класса, объекта. Реализация класса в языке программирования высокого уровня.
- •Информационные сети и телекоммуникации
- •Понятие о способах коммутации в распределенных вычислительных системах (коммутация каналов, коммутация пакетов).
- •Структуры распределенных вычислительных систем (топология, физические и логические элементы сетей эвм).
- •Модель взаимодействия открытых систем (Open Systems Interconnection, osi).
- •Стек протоколов tcp/ip.
- •Виртуальная локальная сеть.
- •Коммутируемый Ethernet (коммутаторы).
- •Протокол связующего дерева (Spanning Tree Protocol, stp).
- •Модуляция. Виды модуляции. Частотный спектр сигнала (понятие).
- •Понятие ip адреса и маски сети.
- •Dhcp (Dynamic Host Configuration Protocol) – протокол динамической конфигурации хостов.
- •Arp (Address Resolution Protocol) – протокол разрешения адресов.
- •Icmp (Internet Control Message Protocol) – протокол межсетевых управляющих сообщений.
- •Фрагментация пакетов (назначение, способ реализации).
Цифровые устройства автоматики и вычислительной техники
Логические элементы. Параметры логических элементов.
Логические элементы строятся на базе ключа. Под логическими элементами понимаются схемы малой интеграции. Можно реализовать на следующих элементах: электромагнитные реле, диоды, транзисторные интегральные микросхемы.
Р
азличают
статические и динамические параметры
логических элементов:
Статические параметры:
П
омехоустойчивость.
-это
максимальное напряжение, которое можно
добавить к Umax
без переключения инвертора из 1 в 0.
- это напряжение,
которое можно отнять от Umin
без переключения инвертора из 0 в 1.
Коэффициент разветвления по выходу (нагрузочная способность) – это максимальное количество входов элементов той же серии на которую можно нагрузить выход логического элемента.
Коэффициент объединения по выходу – это наибольшее количество входов логического элемента.
Б
ыстродействие.
Напряжение питания: 5В
5%
Потребляемая мощность: Статическая и динамическая:
Работа переключателя – добротность.
Разновидности цифровых интегральных схем:
ДЛ- диодная логика; ДТЛ – диодно-транзисторная логика; ТТЛ – транзисторно-транзисторная логика; ТТЛШ, ЭСЛ, МОП, КМОП. Самый быстродейственный – ТТЛШ.
Гонки: Связаны с разновидностью срабатывания элементов схемы, при одновременной подаче на входы узла сигнала. Если в схеме имеются элементы памяти, то гонки могут привести к неправильной работе схемы. Методы борьбы – синхронизация.
Серии интегральных схем логических элементов. Типы выходных каскадов.
Серии ИС ЛЭ.
В зависимости от технологии изготовления ИЛЭ делятся на серии, отличающиеся потреблением питания и т.д. Наибольшее распространение получили ТТЛ (ТТЛШ), ЭСЛ, КМОП. Каждая из технологий совершенствовалась, поэтому каждая из них представлена разными сериями.
ТТЛ. Texas Instruments – первая ТТЛ микросхема SN74. Отечественный аналог 155. Дальнейшее усовершенствование этой серии направлено на повашение быстродействия и снижения мощности потребления.
Серия ИС |
Заруб. аналог |
tз, нс |
fmax, МГц |
Коэф. развлетвления |
Pпотр. мВт |
155 |
SN74 |
10 |
35 |
10 |
10 |
158 |
SN74L |
33 |
3 |
10 |
1 |
131 |
SN74H |
6 |
50 |
10 |
22 |
555 |
SN74LS |
9,5 |
45 |
20 |
2 |
531 |
SN74S |
3 |
125 |
10 |
19 |
1533 |
SNALS |
4 |
50 |
40 |
1 |
1531 |
SN74F |
2 |
130 |
33 |
4 |
ЭСЛ. Первым разработчиком была Motorola. MC10000 – 500 cерия, MC100000 – 1500 cерия. Базовый ЛЭ на основе дифференциального усилителя – это самая быстрая технология. Ключ не находится в насыщении, снижен порог переключения, снижается помехоустойчивость.
КМОП.
В ИС в качестве базового элемента
используют ключи на комплементарных
МОП VT.
Первые серии в 1968 RCA.
Использование полевых VT
обеспечивает высокое Rвх=1012
Ом, Свх
малое. Они чувствительны к статическому
электричеству. Пробой изоляции происходит
от 30 до 300 В. Для защиты от статического
электричества включают защитные диоды
или стабилитроны. Достоинства: мощность
потребления мала в определенном частотном
диапазоне, высокое Rвх,
широкий диапазон Uпит
от 3 до 15 В,
большая нагрузочная способность, высокая
помехоустойчивость при больших Uпит.
Недостатки: низкое быстродействие, Rвых
большое. Лучшие серии КМОП приближаются
к ТТЛ по быстродействию.
.
Типы выходных каскадов:

Логический (стандартный). Выход выполняется по 2-хтактной схеме. Rвых малое. Iвых делают большим с целью быстрой перезарядки Cн. Стандартные выходы нельзя объединять. Если после объединения выходы ЛЭ будут находиться в разных сосотояниях, то выходной уровень напряжения при этом становится неопределен. При этом в выходной цепи протекает большой уравнительный ток, значение которого пропорционально Uвых. В таких каскадах возникает явление сквозного тока. Это явление состоит в том, что при переключении Uвых из 0 в 1 VT2 закрывается позже, чем открывается VT1. Rогр ограничивает амплитуду импульса Iскв.
Выход с открытым коллектором или с открытым стоком. Это выход с плавающей 1. Выходы с ОК можно объединять. Это один из способов организации общих линий связи. Если n выходов с ОК объединены и (n-1) из них находятся в 1, т.е. выходные VT закрыты, то выходной уровень будет определяться состоянием оставшегося ЛЭ. Выходы с ОК потенциально менее быстродействующие, чем логические. Для повышения быстродействия надо повышать Iвых. Поэтому надо понижать Rн, но при этом растет мощность потерь, что является ограничителем снизу. Выходы с ОК используют для организации информационных магистралей, в схемах согласования с линиями связи, для согласования с ИС других серий. В различных схемах формирования сигналов(ОВ, схемах задержки).
Выход с тремя состояниями (с уровнем слабой логической 1). Кроме 0 и 1 имеют состояние “выключено” – высокоимпедансное состояние. В этом состоянии оба VT выходного каскада закрыты и состояние Uвых не определено. ТС – третье состояние. В этих ЛЭ существует специальный вход управления выходом. EO – enable output. Выходы можно объединять, но при этом надо выполнить следующее условие. Из n объединенных выходов n-1 в ТС и только один в активном состоянии 0 или 1. Выходы используются для организации информационных шин, согласования с линиями связи.
VT1
VT2
Uвых
О
З
1
З
О
0
З
З
ТС
Выход с открытым эммитером (ОЭ) или с открытым истоком (ОИ). Эти выходы имеются у интегр. Схем выполненных по технологии Эммитерно-связанной логики. Эти элементы используют внутри серии и не имеют широкого применения.