
- •Вопросы для подготовки к гэ направление обучения – утс Теория автоматического управления
- •Принципы управления. Классификация сау.
- •Объект управления. Алгоритмы и законы регулирования.
- •Математическое описание сау. Модели вход-выход.
- •Типовые воздействия в сау и реакции на них.
- •Математическое описание типовых звеньев сау.
- •Соединения звеньев сау. Математическое описание соединений линейных звеньев сау.
- •Многомерные сау. Модели вход-выход многомерных линейных сау.
- •Математическое описание сау в пространстве состояний.
- •Постановка задач анализа и синтеза сау.
- •Понятие устойчивости сау. Условие устойчивости линейных сау.
- •Устойчивость линейных сау. Алгебраические критерии устойчивости.
- •Устойчивость линейных сау. Частотные критерии устойчивости.
- •Определение устойчивости замкнутой сау по частотным характеристикам разомкнутой сау. Запасы устойчивости по фазе и по усилению.
- •Критерии качества сау.
- •2 Критерия качества:
- •Коррекция сау. Способы коррекции линейных сау.
- •Основные свойства линейных сау. Управляемость.
- •Управляемость.
- •Основные свойства линейных сау. Наблюдаемость.
- •Дискретные сау. Классификация дискретных сау.
- •Математическое описание линейных дискретных сау.
- •Основные понятия и особенности нелинейных сау. Классификация нелинейностей. Типовые нелинейности. Перепроверить
- •Методы линеаризации нелинейных сау.
- •Электротехника и электроника
- •Чистые и примесные полупроводники, формирование p-n перехода.
- •Стабилитрон. Вах стабилитрона. Параметрические стабилизаторы напряжения: устройство, принцип действия.
- •Мостовая схема двухполупериодного выпрямителя: принцип действия, диаграммы работы.
- •Компенсационные стабилизаторы напряжения непрерывного действия, схема, принцип действия.
- •Усилительный каскад, собранный по схеме с общим эмиттером (оэ): схема, назначение элементов, расчет входного сопротивления, коэффициентов усиления Кр, Ku, Ki.
- •Усилительный каскад, собранный по схеме с общим коллектором (ок): схема, назначение элементов, расчет входного сопротивления, коэффициентов усиления Кр, Ku, Ki.
- •Полевой транзистор с p-n переходом: устройство, принцип действия, вах.
- •Усилительный каскад, собранный на полевом транзисторе по схеме с общим истоком (ои), назначение элементов.
- •Моп (мдп) транзисторы со встроенным каналом: устройство, принцип действия, вах.
- •Виды межкаскадных связей. Непосредственная и емкостная связь: схемы, достоинства, недостатки.
- •Виды межкаскадных связей. Трансформаторная и оптическая связь: схемы, достоинства, недостатки.
- •Усилители мощности в режимах «а», «в»: схемы, достоинства, недостатки.
- •Усилители мощности в режимах «c», «d»: схемы, достоинства, недостатки.
- •Ключевой режим работы биполярного транзистора: схема с общим эмиттером (оэ), диаграммы работы.
- •Мультивибраторы: типовая схема на таймере 1006 ви1, диаграммы работы, расчет элементов.
- •Двухтактный усилитель мощности: устройство, принцип действия, диаграммы работы.
- •Операционные усилители: инвертирующий и неинвертирующий усилитель.
- •Операционные усилители: повторитель напряжения, сумматор.
- •Метрология и измерительная техника
- •Погрешности измерений: абсолютная, относительная, приведенная. Аддитивная и мультипликативная погрешность, полоса распределения.
- •Нормирование погрешностей средств измерения.
- •Случайная погрешность измерения. Законы распределения, доверительный интервал.
- •Магнитоэлектрические омметры, особенности измерения больших и малых сопротивлений.
- •Мосты постоянного и переменного тока, области применения, схема, условие баланса.
- •Цифровые устройства автоматики и вычислительной техники
- •Логические элементы. Параметры логических элементов.
- •Коэффициент разветвления по выходу (нагрузочная способность) – это максимальное количество входов элементов той же серии на которую можно нагрузить выход логического элемента.
- •Серии интегральных схем логических элементов. Типы выходных каскадов.
- •Типовые комбинационные схемы. Назначение, принципы построения, примеры использования.
- •Регистры: классификация, принципы построения, выполняемые функции, примеры использования.
- •Счетчики: назначение, классификация, принципы построения, режимы работы примеры использования.
- •Полупроводниковая память: назначение, классификация. Временные диаграммы работы зу.
- •Вычислительные машины, системы и сети
- •Представление информации в цвм и вс.
- •Принцип работы эвм. Программная модель универсального микропроцессора. Сегментация памяти.
- •Система памяти эвм. Особенности памяти типа стек. Назначение и принцип действия кэш-памяти.
- •Общие замечания
- •Целостность данных
- •Система команд универсального микропроцессора.
- •Видеосистема компьютера.
- •Обмен информацией между процессором, памятью и внешними устройствами.
- •Интерфейсы ввода-вывода: определение, классификация. Внутренний интерфейс. Примеры реализации.
- •Интерфейсы ввода-вывода: определение, классификация. Внешний интерфейс. Примеры реализации.
- •Программно-логическое управление в микропроцессорных системах
- •Классификация и особенности архитектуры современных микропроцессоров.
- •Обобщенная структура микропроцессорной информационной измерительно-управляющей системы. Схемы построения многоканальных измерительных систем.
- •Микроконтроллеры: назначение, особенности архитектуры. Типовые периферийные устройства.
- •Программируемые логические контроллеры: назначение, классификация, типовые функции.
- •Системы программирования на языках мэк.
- •Программирование и основы алгоритмизации
- •Поколения языков программирования. Уровни языков программирования.
- •Трансляторы: назначение, классификация, примеры. Этапы прохождения программ на эвм. Результаты, формируемые каждым этапом.
- •Жизненный цикл программного обеспечения. Составляющие процесса жизненного цикла программного обеспечения. Каскадная (водопадная) модель жизненного цикла программы.
- •Типизация данных. Система типов в языке программирования высокого уровня.
- •Технология программирования вычислительных задач (модульное и структурное программирование). Пример использования.
- •Типовые алгоритмы, используемые в программировании. Средства реализации типовых алгоритмов в языке программирования высокого уровня.
- •Организация ввода-вывода. Средства работы с файлами в языке программирования высокого уровня.
- •Понятие подпрограммы. Виды подпрограмм, их отличительные особенности. Способы передачи параметров.
- •Динамические переменные. Операция разыменования. Размещение/освобождение динамических переменных.
- •Модуль и его структура. Основные типы модулей в инструментальной среде разработки программного обеспечения на языке высокого уровня.
- •Фундаментальные принципы объектно-ориентированного программирования. Понятие класса, объекта. Реализация класса в языке программирования высокого уровня.
- •Информационные сети и телекоммуникации
- •Понятие о способах коммутации в распределенных вычислительных системах (коммутация каналов, коммутация пакетов).
- •Структуры распределенных вычислительных систем (топология, физические и логические элементы сетей эвм).
- •Модель взаимодействия открытых систем (Open Systems Interconnection, osi).
- •Стек протоколов tcp/ip.
- •Виртуальная локальная сеть.
- •Коммутируемый Ethernet (коммутаторы).
- •Протокол связующего дерева (Spanning Tree Protocol, stp).
- •Модуляция. Виды модуляции. Частотный спектр сигнала (понятие).
- •Понятие ip адреса и маски сети.
- •Dhcp (Dynamic Host Configuration Protocol) – протокол динамической конфигурации хостов.
- •Arp (Address Resolution Protocol) – протокол разрешения адресов.
- •Icmp (Internet Control Message Protocol) – протокол межсетевых управляющих сообщений.
- •Фрагментация пакетов (назначение, способ реализации).
Методы линеаризации нелинейных сау.
С т. зрения передачи и преобразования сигнала НЛ отлич. от линейных систем тем, что мгновенный коэфффициент передачи зависит от значения входного сигнала. САУ, содержащие звенья, динамика которых описывается НЛ дифференц. уравнениями относят к НЛ системам.
НС-динамика к-х описывается нелин-ми диф ур-ми, это сис-мы, имеющие нелинейную стст-ю хар-ку.
Систему можно представить в виде соединения из 2-х элементов:
можно свести к:
ЛЧ описывается обычными диф ур-ми с пост-ми коэфф-ми.
НЭ является безинерционным и его выходная величина и вход. величина связаны связаны между собой НЛ алгебраическим уравнением. Нелинейность обусловлена нелинейностью статической характеристики одного из элементов системы.
Методы линеаризации нелинейных САУ.
метод гармонической линеаризации
статическая линеаризация
совместная стат и гармон линеаризация
вибролинеаризация
Метод гармонической линеаризации.
Сущность метода гарм-ой линеаризации заключается в отыскании периодического решения на входе нелинейного элемента, разложение сигнала на выходе нелинейного элемента в ряд Фурье и замены вых сигнала его первой гармоникой. Такая замена справедлива если сис или ЛЧ явл-ся фильтром низкой частоты, т.е. подавляет высшие гармоники.
В рез-те линеаризации нелин стат хар-ку заменяют эквивалентным линейным звеном с коэффициентами
И для гистерезисных хар-ик (петлевых) значение k/Г всегда получается отрицательным, т.е. в ур-ие вводят производную с отриц знаком и эта производная дает запаздывание в работе звена. Такую линеар-ю наз-т гармонической т.к. она связана с разложением нелин колебаний на гармонич-ие составляющие.
k/Г и kГ – гарм-ие коэф-ты усиления нелин звена.
Отличия гарм-ой линеар-ии от обычной:
При гарм-ой линеаризации нелин хар-ку заменят прямой, крутизна которой зависит от амплитуды входного сигнала.
Гарм-ая линеаризация позволяет вместо нелин звена получить линейное, к-т усиления которого зависит от а.
Гарм-ая линеар-ия дает возможность опредилить св-ва нелин САУ методами линейной теории автом-х сис-м.
Статическая линеаризация.
Этот метод приближенного исследования точности нелин сис в стационарных случ реж-ах.
В качестве примера возьмем нелин звено со стат хар-ой типа насыщение.
Пусть на входе стационарный случ. Сигнал.
X(t)=mx+x0(t)
Y(t)=my+y0(t)
Задача стат лин-ии закл-ся в том чтобы найти линейное звено дающее при том же вх сигнале x(t) вых сигнал = эквивалентному вых сигналу нелин звена при этом надо чтобы эквив-й сигнал максимально приближался к y(t).
Точность линеариз зависит от того, какой критерий выбран для сравнения yэкв и y.
Сущ 2 критерия сравнения yэкв и y:
1. по первому способу линеаризация осущ-ся исходя из след условий
при выполнении первого условия линейное звено будет полностью эквивалентно исх-му нелин звену в отношении пропускания заданной детерменированной составляющей вх сигнала. Второе условие означает эквивалентность в отношении пропускания центрированной случ составляющей вх сигнала. В связи с тем что дисперсия не определяет полностью закона распределения случ величины выбор ур-ия эквивалентного линейного звена только по дисперсии определяет погрешность данной стат линеаризации.
2. основан на линеаризации разности
К-ты стат линеар-ии:
Совместная статическая и гармоническая линеаризация.
Случай когда в сис присутствуют автоколебания и на вх сис подаются случ воздействия:
f(t)=mf+f0(t)
x(t)=mx+x0 (t)+a*sinat
Из-за неприменимости принципа суперпозиции необходимо учитывать наличие всех 3-х составляющих для этого надо осущ-ть совместную стат и гарм линеа-ию, в рез-те этого сигнал на выходе:
в
случ симметр-ой нелин стат хар-ки пост
состав-ую
my=y0=kсг0mx
эти 4 к-та опред-ся по фор-ам для гарм-ой и стат линеар-ии. Эти к-ты уже будут зависеть от 4-х составляющих (mx, x, a, a)
При исследовании сис mx, x, a, a - определяются совместным решением ур-ий для колебательной составляющей и для случ состав-ей.
Применяя совместно стат и гармонич линеаризацию можно решать две задачи:
можно исследовать влияние внешних случ воздействий на параметры возможных автоколебаний.
можно исследовать точность сис в случ режимах при наличии сис гармонических колебаний.
В
ибролинеаризация.
Испол-ся для исключения эффекта наличия нелин-х хар-к (люфт и зона нечувст-ти).
П
ри
виб-ой лин-ии на вх нелин звена на
постоянный или медленно изменяющиюся
сигнал накладывается высокочастотная
состав-ая и в рез-те этого нелин звено
пропускает пост сост-ую как пропорциональное
звено.
Рассмотрим метод виб-ой лин-ии на примере релейной сис:
зависимость
y0=f(x0)
,где y0
зависит от x0
и от формы нелин-ой стат хар-ки, т.о. при
наличии переменного воздействия
,
этот элемент пропускает пост воздействие
x0
как звено непрерывного действия.
Сам процесс виб-й лин-ии можно трактовать как процесс модуляции, в данном примере реле явл-ся модулятором высокочас-ое воздействие - сигнал несущей частоты, а НЧ вх сигнал x0 явл-ся модулирующим сигналом. В данном случае осущ-ся ШИМ и ф-ей модулир-го сигнала явл-ся ширина вых имп-са и условие неискаженной передачи НЧ-составляющей явл-ся fВЧ/fНЧ>=3
Когда реле работает в составе САУ обычно НЧ сигнал x0 представляет собой сигнал управления и изменения во времени x0 и есть перех-ой процесс в сис.
ВЧ воздействие осущ виб-ой лин-ей м.б. получено 3-я способами:
С пом внешнего генератора, создающего вынужд-е колебания на вх нелин элемента.
Путем создания автоколебаний в самой САУ.
Путем создания скользящего режима