Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 1_2 ОРТ.docx
Скачиваний:
11
Добавлен:
10.06.2024
Размер:
164.73 Кб
Скачать

1.2. Роботы в медицине

Большие перспективы имеет робототехника в медицине, в том числе в хирургии, протезировании, для реабилитации и обслуживания больных и инвалидов. В частности, разрабатываются различные модели хирургических роботов. Ещё в 1985 году робот Unimation Puma 200 был использован для позиционирования хирургической иглы при выполнении биопсии головного мозга, проводившейся под управлением компьютера. В 1992 году разработанный в Имперском колледже Лондона робот ProBot впервые осуществил операцию на предстательной железе, положив начало практической роботизированной хирургии. В 2000 году компания IntuitiveSurgical начала серийный выпуск роботов DaVinci, предназначенных для лапароскопических операций.

На основе достижений робототехники создаются все более совершенные искусственные конечности — протезы рук и ног, имеющие приводы, встроенные микропроцессорные устройства управления и биологические обратные связи. Созданы искусственные скелеты с приводами, так называемые экзоскелетоны (экзо означает «внешний»), для парализованных людей.

В медицинском центре государственного университета штата Огайо создан робот-хирург, который имеет видеокамеру и две небольшие руки-манипулятора, а управляет им человек с помощью компьютера. Через небольшие разрезы на теле устройство проникает в сердце, после чего на основании полученной от него видеоинформации компьютер формирует трехмерный образ органа, позволяющий выполнять операцию значительно эффективнее. Хирурги единодушно признали пользу такого устройства.

Военные медики США создали робот для проведения операций в полевых условиях. Им можно дистанционно управлять с любого расстояния. Робот снабжен двумя манипуляторами, на каждом из которых установлено по 7 моторов и еще 14 моторов определяют положение тела. Система передает врачу трехмерное изображение оперируемой области и звуковой фон и обеспечивает обратную связь с хирургом, сообщая ему информацию, связанную с нагрузкой на скальпель. Компьютерный модуль компенсирует естественное дрожание кистей рук человека, повышена точность движений манипуляторов.

Похожие работы проводятся в российском Научном центре сердечно-сосудистой хирургии имени Бакулева РАМН. Используемый там робот также снабжен несколькими манипуляторами, способными держать различные инструменты (скальпель, пинцет и т. д.). Благодаря повышенному числу степеней свободы он может работать в самых неудобных, недоступных для человека положениях. Врач за монитором следит за увеличенной зоной операции и управляет манипуляторами, подавая через компьютер голосовые команды.

1.3. Бытовые роботы

В ряде стран (США, Япония, Швеция) созданы так называемые сервисные (бытовые, персональные) роботы для обслуживания больных и инвалидов, детей, для использования в домашнем хозяйстве для уборки помещений, работы на кухне, прислуживания за столом, охраны квартиры, выполнения работы швейцара, обслуживания телефона, радио- и телевизионной аппаратуры и т.п. Такие роботы имеют техническое зрение, обладают слухом, дистанционными и тактильными датчиками, могут вести диалог с человеком в объеме сотен фраз, снабжены системами радиоуправления и передвижения.

При создании домашних автономных устройств подчас возникает больше проблем, чем при создании военных и космических роботов. Хотя в жилых домах не бывает перепадов температур в сотни градусов, а превышение скорости на десятки сантиметров несущественно (что в условиях невесомости может сразу привести к аварии), требование максимальной безопасности значительно осложняет жизнь разработчикам.

Быстрее всего сегодня развивается рынок автономных домашних пылесосов. Такие модели оборудованы навигационной системой и всевозможными периферийными датчиками. Роботы-пылесосы перемещаются по квартире по случайным траекториям, собирая мусор и объезжая статические предметы, и удирают от движущихся объектов (людей и животных). Кроме того, умные пылесосы способны самостоятельно возвращаться на свое «место жительства» для подзарядки.

В настоящее время выпускаются сотни моделей пылесосов, отличающихся ценой, дизайном и функциональностью. Поскольку робот-пылесос является устройством автономным, то он обязательно оснащен не только аккумулятором, но и камерой, помогающей ему ориентироваться в помещении, чтобы два раза не убирать одно и то же место. На борту пылесоса имеются все необходимые датчики (включая гироскоп), позволяющие прибору измерять расстояние до препятствия, оценивать высоту основания мебели над полом (сможет ли он под нее заехать), фиксировать столкновение, определять наличие на месте пылесборника и т.д. Интеллектуальная электроника позволяет роботу нормально ориентироваться среди мебели и стен в процессе работы.

Робот мойщик окон. Есть два типа роботов для мойки окон. Первый тип — робот из двух частей, в одной из которых находится управляющая электроника, а в другой — чистящий механизм. Две части крепятся к оконному стеклу с разных сторон, и держатся на нем за счет постоянных магнитов. Второй тип робота-мойщика окон — робот с креплением вакуумными присосками. Такой робот имеет только один и только рабочий модуль для одной стороны окна.

Другой перспективный рынок – автономные газонокосилки. Например, фирма Electrolux выпускает косилки, способные подзаряжаться от солнечной батареи, запасаться энергией на ночь и работать практически круглосуточно. Принцип работы данных роботов заключается в следующем. Первым делом прокладывают кабель-ограничитель, по которому течет постоянный ток, и который определяет собой границу рабочей зоны робота-газонокосилки. Такая автономная газонокосилка оснащена всеми необходимыми датчиками, включая датчики препятствий, как и у роботов-пылесосов, чтобы газонокосилка могла бы объехать дерево, бордюр или клумбу.

Робот-снегоуборщик. Управление роботом осуществляется со смартфона по wi-fi, и выглядит это как интерактивная игра. Поднимать и опускать ковш, перемещаться на гусеницах назад и вперед, разворачиваться, - все это может делать робот, которым оператор управляет удаленно, даже находясь дома в тепле за компьютером. Глазами робота является видеокамера, через которую пользователь может оценивать обстановку, чтобы затем направлять робота для выполнения снегоуборочных работ. Емкий аккумулятор, заряженный от розетки, позволит осуществлять уборку снега в течение нескольких часов без необходимости таскать снег вручную, особенно если речь идет об уборке больших территорий, вблизи строений, куда снегоуборочная техника проехать просто не может

Более совершенные модели интеллектуальных бытовых устройств помимо уборки мусора способны выполнять множество дополнительных функций – например, подносить напитки и тапочки. Робот Cye фирмы Probotics, постоянно подключенный к ПК, дистанционно управляется заложенной в компьютер программой. С помощью удобного визуального инструмента пользователь может, используя план комнат, определить для Cye траектории передвижения, доступные и запрещенные области в квартире. Общение с роботом выполняется по протоколу, содержащему 35 команд и 20 ответных сообщений от робота. Немаловажно, что программное обеспечение Cye открыто для совершенствования, позволяет расширять базовые возможности системы и создавать на его основе собственные программы управления роботом. В будущих версиях Cye будет поддерживаться навигационная система GPS, и он сможет передвигаться не только по комнатам, но и на приусадебном участке.

Спрос на подобные устройства растет, и известная компания NEC уже представила модель PersonalRobot R100, которая поступила в продажу в 2001 г. Робот высотой 44 см и весом 8 кг способен произносить 300 фраз, понимать сотни команд и различать 10 лиц. R100 может приносить мелкие вещи, вынимать почту из ящика, включать и выключать телевизор и кондиционер, записывать видеосообщения и передавать их по назначению. Он подключен к ПК и имеет встроенный процессор.

В сентябре2005 года в свободную продажу поступили первые человекообразные роботы «Вакамару» производства фирмы Mitsubishi. Робот стоимостью в 15 тысяч долларов способен узнавать лица, понимать некоторые фразы, давать справки, выполнять некоторые секретарские функции, следить за помещением.

В США создан робот - ночной сторож ("Центурион-1"). Он имеет колесный ход, инфракрасную систему обнаружения людей, устройство для лишения нарушителя подвижности с помощью ультразвука, веселящего или парализующего газа, электрических разрядов.

Сотрудники лаборатории ИИ Массачусетского института считают, что робот – это не просто прислуга. Он обязательно должен взаимодействовать с окружающим миром и выполнять социально значимые функции. Исходя из этой посылки, они разрабатывают робота Cog, своим внешним видом и отчасти устройством напоминающего человека. Чтобы придать роботу привычную людям походку, допустимые углы сгибания его рук и ног сделаны примерно равными человеческим. В качестве глаз робота применяются четыре видеокамеры (по две на каждый «глаз»), распознающие оттенки серого и имитирующие режим бинокулярного зрения. В ушных раковинах, работающих по принципу локатора, установлены микрофоны, на конечностях и туловище – датчики давления (имитация осязания).Вестибулярный аппарат моделируется тремя гироскопами, расположенными в голове робота. Единственное, что пока не реализовано по аналогии – обоняние. Система управления представляет собой сложную иерархию устройств, от периферийных микроконтроллеров управления положением ступни до сети цифровой сигнальной системы обработки видео- и аудиоинформации. В большинство узлов Cog встроены процессоры, на которых выполняется интерпретатор L (версия CommonLisp). Интенсивная обработки информации происходит в сети промышленных 200МГц процессоров в ОС реального времени QNX.

Соседние файлы в предмете Основы робототехники