
Лекция № 6
Анатомия микроциркуляторного русла и вен
-
Микроциркуляторное русло
Пройдя по разветвлениям интраорганных артерий, кровь достигает участка кровеносного русла, расположенного между мелкими артериями и венами и составляющего микрососудистое, или микроциркуляторное, русло. Микроскопические кровеносные сосуды были открыты более 300 лет назад М. Мальпиги и А. ван Левенгуком, но значительные успехи в изучении микроциркуляторного русла были достигнуты лишь за последние время в связи с развитием учения о микроциркуляции. Понятие о микроциркуляции сложилось в 50-е гг. нашего столетия, тогда же был введен в научный язык и сам термин. Под микроциркуляцией понимают совокупность процессов, обеспечивающих взаимодействие между клетками тканей, окружающей их тканевой жидкостью и кровью, протекающей в сосудах. Микроциркуляторное русло представляет собой составную часть системы микроциркуляции, в которую входят также пути внесосудистого транспорта веществ, межтканевые и межклеточные щели и вещество, окружающее капилляры. Изучение микроциркуляции является одной из ведущих проблем современной физиологии и медицины. Это объясняется тем, что благодаря микроциркуляции в конечном счете обеспечивается обмен веществ во всех тканях, создается необходимый для жизни тканевой гомеостаз. Нарушения микроциркуляции лежат в основе многих патологических процессов, в первую очередь заболеваний сосудистой системы.
В изучении микроциркуляторного русла важная роль принадлежит таким исследовательским методикам, как прижизненная и электронная микроскопия. Если в недалеком прошлом связующее звено между артериями и венами обобщенно рассматривалось как капиллярное русло, то в настоящее время установлено, что оно имеет сложную конструкцию. В микроциркуляторном русле выделяют пять взаимосвязанных звеньев:
1) артериолы; 2) прекапиллярные артериолы, или прекапилляры; 3) капилляры; 4) посткапиллярные венулы, или посткапилляры; 5) венулы (рис.1). Каждое из этих звеньев обладает присущими ему морфологическими особенностями.
Артериолы представляют собой первое (входное) звено микроциркуляторного русла. В различных органах они значительно различаются по диаметру. Стенка артериол состоит из внутренней, средней и наружной оболочек. Характерным для артериол, по данным В. В. Куприянова, является то, что мышечные клетки в средней оболочке располагаются в один слой. Благодаря мышечным клеткам стенка артериол может сокращаться, и просвет их суживается. Этим артериолы регулируют поступление крови в микроциркуляторное русло. Поэтому их образно называют «кранами» сосудистой системы.
Прекапилляры обычно отходят от артериол под прямым утлом. В их стенке отсутствуют эластические волокна, а мышечныe клетки находятся на расстоянии друг от друга. В местах обхождения прекапилляров от артериол и деления на капилляры находятся скопления гладких мышечных клеток, образующих прекапиллярные сфинктеры. Значение прекапилляров состоит в том, что они участвуют в распределении крови между отдельными звеньями капиллярных сетей. Через их стенки происходит обмен веществ между кровью и тканями.
Капилляры играют главную роль в обменных процессах. Они наиболее тесно связаны с тканями органов, в которых располагаются, и могут быть с полным правом отнесены к составным частям самих органов. Капилляры почти повсеместно распространены в организме, они отсутствуют только в эпителии кожи и слизистых оболочек, дентине и эмали зубов, эндокарде клапанов сердца, роговице и внутренних средах глазного яблока. Капилляры — это наиболее тонкостенные эндотелиальные трубки, лишенные сократимых элементов. Они отличаются в основном прямолинейным ходом.
Согласно определению В. В. Куприянова, капилляры не имеют боковых ветвей, поэтому они не ветвятся, а разделяются на новые капилляры и соединяются между собой, образуя капиллярные сети. Форма, пространственная ориентация и густота капилляров и образуемых ими сетей обусловлены конструкцией и функциональными особенностями органов. Диаметр капилляров в различных органах и тканях составляет от 2 до 30 — 40 мкм. Узкие капилляры имеются в гладких мышцах, легких, головном мозге. Широкие капилляры находятся в железах. Наибольшей шириной отличаются капиллярные синусы печени, селезенки, костного мозга и капиллярные лакуны пещеристых тел половых органов.
В зависимости от наполнения кровью различают:
1) функционирующие (открытые) капилляры; 2) плазматические (полуоткрытые) капилляры, содержащие только плазму; 3) закрытые (резервные) капилляры. Соотношение между числом открытых и закрытых капилляров определяется функциональным состоянием органа. Если уровень обменных процессов длительное время понижен, то количество закрытых капилляров увеличивается и часть их подвергается редукции. Это происходит, например, в мышцах при значительном снижении двигательной активности у больных, долго лежавших в постели, при иммобилизации конечностей с переломами и т. д. С другой стороны, может происходить новообразование капилляров.
Принято считать, что у капилляров имеются артериальный и венозный отделы, однако между ними нет существенных морфологических различий, и не всегда можно отнести тот или иной участок капилляра к артериальной или венозной части кровеносного русла.
Посткапилляры принадлежат к венозному звену микрососудистого русла. Они образуются в результате слияния капилляров. Диаметр посткапилляров больше, чем капилляра и их стенка также лишена мышечных клеток. Появление мышечных элементов означает переход от посткапилляров к венулам, диаметр которых составляет 40 — 50 мкм.
Венулы, как и артериолы, связаны анастомозами между собой и с более крупными венами, образуя сложные сети. Извилистость мелких вен и расширения в местах их слияния указывают на резервуарную функцию этой части микроциркуляторного русла. Здесь имеются также приспособления, регулирующие движение крови. К ним относятся мышечные сфинктеры и клапаны, недавно открытые в тончайших венах и венулах.
В ряду приспособлений, регулирующих кровоток в микроциркуляторном русле, стоят артериовенозные анастомозы — прямые соединения между артериями и венами (рис. 2). Эти образования впервые описал в 1862 г. французский анатом Сюкэ, выделив их в ногтевом ложе, коже и мякоти пальцев кисти. В 1872 г. профессор Варшавского университета Г. Ф. Гойер, применив инъекционную и коррозионную методику, нашел извитые анастомозы между артериями и венами в ушной раковине, кончике носа, тканях губ и хвоста у лабораторных животных. Долгое время считали, что артериовенозные анастомозы являются случайными находками или связаны с патологией. Постепенно накапливались факты, свидетельствующие об их широком распространении, и в настоящее время есть основания рассматривать их как постоянные образования кровеносной систры, несущие определенную функцию.
По данным В. В. Куприянова, все артериовенозные анастомозы соединяют артериолы с венулами, поэтому их следует называть артериоло-венулярными. Они представляют собой шунты, по которым артериальная кровь сбрасывается в венозное русло в обход капилляров. Таким образом, наряду с обычным, транскапиллярным прохождением крови, существует юкстакапиллярный кровоток, который обеспечивает более быстрое ее продвижение. Этим достигается разгрузка капиллярного русла и выравнивается общий баланс прохождения крови через тот или иной орган.
Наряду с типичными артериовенозными анастомозами описываются полушунты, по которым в венозное русло поступает смешанная кровь. Шунты и полушунты подразделяются на анастомозы с постоянными и перемежающимися кровотоками. Последние обладают запирательными механизмами, которые состоят из гладких мышечных клеток (мышечных муфт) или образуют утолщения внутренней оболочки, построенные из эпителиальных клеток, способных к набуханию. Подобные приспособления характерны для клубочковидных анастомозов.
Артериовенозные анастомозы способны быстро замыкаться и размыкаться. Для иллюстрации гемодинамического значения этих анастомозов В. В. Куприянов приводит следующий расчет. Если принять, что диаметр артериоло-венулярного анастомоза в 10 раз больше, чем диаметр кровеносного капилляра, то согласно закону Пуазейля кровоток через анастомоз за единицу времени превышает таковой в капилляре в 104, т.е. в 10 тысяч, раз. Таким образом, в смысле продвижения крови один артериоло-венулярный анастомоз эквивалентен 10 тысячам капилляров.
Артериоло-венулярные анастомозы появляются во второй половине внутриутробного периода. Осуществляя смешение артериальной и венозной крови, эти образования выполняют у плода функцию, аналогичную овальному или артериальному протоку. В постнатальном периоде могут происходить как новообразование, так и редукция артериоло-венулярных анастомозов. Увеличение их количества отмечается в некоторых органах при патологических состояниях (например, это происходит в легком при его эмфиземе, когда затрудняется транскапиллярный кровоток.
Микроциркуляторное русло, отдельные компоненты которого мы рассмотрели, представляет собой сложную многоканальную систему, которая имеет свои ходы и выходы. Структура этой системы определяется пространственной упорядоченностью, образующих ее сосудистых элементов, их отношением ко входам и выходам системы, а также к параллельно расположенным элементам. В. В. Куприянов выделяет в микроциркуляторном русле рабочие единицы в виде автономных микрососудистых комплексов, имеющих изолированные пути притока и оттока крови и обеспечивающих тканевой гомеостаз в тех участках тканей, которые снабжаются каждым из этих комплексов. Строение микрососудистых комплексов связано с конструкцией органов, которая определяет пространственную организацию всего микроциркуляторного русла: в плоскостных образованиях и оболочках сосудистые сети имеют двухмерную ориентацию, в полых органах они располагаются послойно, образуя многоярусные конструкции, в паренхиматозных органах имеют трехмерно-пространственную организацию.
Соотношение компонентов микроциркуляторного русла в различных органах имеет свои особенности. Для скелетных мышц и сетчатки глаза характерно пропорциональное развитие артериальных и венозных частей микрососудистого русла. В слизистой оболочке желудка и кишечника, паренхиме легких, сосудистой оболочке глазного яблока капилляры преобладают над другими микроциркуляторными структурами. Минимальное количество капилляров найдено в сухожилиях, фасциях, склере глазного яблока. Превалирование венозного компонента отмечено в микроциркуляторном русле синовиальных складок и ворсинок.
Несмотря на значительные достижения в изучении микроциркуляторного русла, многое в этой области остается нераскрытым. Исследования, на которых базируются современные представления о конструкции этого русла, выполнены на ограниченном круге объектов. Недостаточно изучены особенности микрососудов ряда органов, особенно трехмерно организованных. Не все морфологические детали мы можем интерпретировать с функциональной точки зрения. Решение этих вопросов пока еще принадлежит будущему.