Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
основы информатики лекции.docx
Скачиваний:
59
Добавлен:
13.03.2015
Размер:
1.1 Mб
Скачать

Информатика лекции.

§1. Введение в информатику. Понятие информации.

Информатика состоит из двух пересекающихся частей.

Первая часть курса — основы вычислительной техники (ВТ). Здесь мы изучим основные вопросы построения ЭВМ и научимся пользоваться общеизвестными программами.

Вторая часть — информатика изучает методы представления, накопления, передачи и обработки информации с помощью ЭВМ. Информация тесно связана с применением ЭВМ, так как ЭВМ позволяет быстро обрабатывать большие объемы информации. Поскольку ЭВМ работает по программе мы научимся составлять алгоритмы и программы.

Информатика - наука о законах и методах измерения (оценки), хранения, переработки и передачи информации с применением математических и технических средств.

Определение информации.

Слово "информация" от informatio — сведение, разъяснение, ознакомление.

Информация — это совокупность каких-либо сведений, данных, пе­редаваемых устно (в форме речи), письменно (в виде текста, таблиц, рисун­ков, чертежей, схем, условных обозначений) либо другим способом (напри­мер, с помощью звуковых или световых сигналов, электрических и нервных импульсов, перепадов давления или температуры и т. д.).

В середине XX века термин «информация» стал общенаучным поня­тием, включающим обмен сведениями между людьми, человеком и автома­том (электронной вычислительной машиной — ЭВМ), автоматом и автома­том, обмен сигналами в животном и растительном мире, передачу признаков от клетки к клетке, от организма к организму.

Теоретические и практические вопросы, относящиеся к информации, изучает информатика.

Информатика — наука, изучающая структуру и свойства информа­ции, а также вопросы, связанные с ее сбором, хранением, поиском, переда­чей, преобразованием, распространением и использованием в различных сферах человеческой деятельности.

Еще одно определение информатики.

Информатика — это область человеческой деятельности, связанная с процессами преобразования информации с помощью компьютеров.

Дать однозначное определение информации трудно. Существует 4 подхода к определению информации:

  • обыденный(в смысле осведомление о положении дел, это информация, сообщаемая по телефону, передаваемая по радио и телевидению),

  • философский(информацию получает субъект об объекте в процессе познания; считается, что объект отражается в сознании субъекта),

  • кибернетический(информация --- это управляющий сигнал, передаваемый по линии связи, однако это скорее носитель информации, чем сама информация),

  • вероятностный(информация --- это мера уменьшения неопределенности состояния объекта исследования).

Поговорим подробнее о вероятностном подходе, так как он позволяет ввести количественную меру информации. Этот подход и принят за основу в современной науке.

Каждому объекту присуща какая либо неопределенность. Например, он может находиться в одном из нескольких фиксированных состояний. Упавшая монета находится в одном из двух состояний, игральный кубик — в одном из шести и т.д. В процессе испытания (бросание монеты, кубика) объект приобретает одно из возможных состояний. Следовательно, неопределенность состояния объекта при этом уменьшается. Тем самым испытатель получает какую-то информацию. Степень уменьшения неопределенности при испытании может быть разной. Она зависит от количества возможных состояний, и от их вероятностей.

Вероятность— это величина в диапазоне от 0 до 1, характеризующая частоту появления того или иного состояния объекта при испытаниях.

Понятно, что при выпадении наименее вероятного состояния получаем наибольшее количество информации. Если объект имеет n равновероятных состояний, то вероятность каждого из них равна 1/n. Например, вероятность выпадения одной из граней кубика при бросании равна 1/6, а вероятности выпадения орла (решки) при бросании монеты равна 0,5. Это означает, что из 1000 бросаний монеты реализуется примерно 500 выпадений орла (решки).

Пристальное внимание к информатике связано с бурным ростом объема человеческих знаний, который порой называют «информационным взрывом». Общая сумма человеческих знаний изменялась раньше очень медленно. Затем процесс получения новых знаний получил заметное ускорение. Так, общая сумма человеческих знаний к 1800 г. удваивалась каждые 50 лет, к 1950 г. — каждые 10 лет, а к 1970 г. — каждые 5 лет, к 1990 г. —ежегодно

Колоссальный объем информации передается по глобальной сети Ин­тернет, которая связывает страны, расположенные на разных континентах.

Согласно отчету ComputerAlmanacIndustryInc., в 1998 г. во всем ми­ре свыше 147 млн человек имели доступ к Интернету, по сравнению с 61 млн. в 1996 г. В отчете названы 15 наиболее «сетевых» стран мира.

Список возглавили США, где насчитывается 76,5 млн пользователей, затем следовали Япония и Великобритания с 9,75 млн и 8,1 млн пользовате­лей соответственно. В десятке «сильнейших» оказались Германия — 7,14 млн пользователей, Канада— 6,49 млн, Австралия— 4,36 млн, Фран­ция— 2,79 млн, Швеция— 2,58 млн, Италия 2,14 млн и Испания — 1,98 млн.

Оставшиеся пять стран в списке пятнадцати были: Нидерланды •— 1,96 млн пользователей Интернетом, Тайвань— 1,65 млн., Китай — 1,58 млн., Финляндия — 1,57 млн и Норвегия — 1,34 млн. Взятые вместе, эти 15 стран составляют 89% мирового «населения» Интернета.

Таким образом, в настоящее время накоплен большой объем инфор­мации, обработать который вручную людям невозможно (в силу своих психофизических особенностей).

Эффективным инструментом обработки большого объема информации является электронная вычислительная машина (ЭВМ).

Одним из основных факторов ускорения научно-технического прогресса является широкое использование новых информационных технологий, под которыми понимается совокупность методов и средств сбора, обработки и передачи данных (первичной информации) для получения информации нового качества о состоянии объекта, процесса или явления на базе вычислительной и коммуникационной техники и широкого применения математических методов.

Различают две формы представления информации — непрерывную (аналоговую) и прерывистую (цифровую, дискретную). Непрерывная форма характеризует процесс, который не имеет перерывов и теоретически может изменяться в любой момент времени и на любую величину (например, речь человека, музыкальное произведение). Цифровой сигнал может изме­няться лишь в определенные моменты времени и принимать лишь заранее обусловленные значения (например, только значения напряжений 0 и 3,5 В). Моменты возможного изменения уровня цифрового сигнала задает тактовый генератор конкретного цифрового устройства.

Для преобразования аналогового сигнала в цифровой сигнал требуется провести дискретизацию непрерывного сигнала во времени, квантование по уровню, а затем кодирование отобранных значений.

Дискретизация — замена непрерывного (аналогового) сигнала по­следовательностью отдельных во времени отсчетов этого сигнала. Наиболее распространена равномерная дискретизация, в основе которой лежит теоре­ма Котельникова.

На рисунке схематично показан процесс преобразования аналогового сигнала в цифровой сигнал. Цифровой сигнал в данном случае может при­нимать лишь пять различных уровней. Естественно, что качество такого пре­образования невысокое. Из рисунка видно, что изменение цифрового сигнала возможно лишь в некоторые моменты времени (в данном случае этих момен­тов одиннадцать).

После такого преобразования непрерывный сигнал представляют по­следовательностью чисел. Показанный на рисунке непрерывный сигнал за­меняется числами 2-3-4-4-4-3-2-2-3-4-4. Затем перечисленные десятичные числа преобразуют (кодируют) в последовательность единиц и нулей. Ре­зультаты данного преобразования можно представить таблицей:

После такого преобразования непрерывный сигнал представляют по­следовательностью чисел. Показанный на рисунке непрерывный сигнал за­меняется числами 2-3-4-4-4-3-2-2-3-4-4. Затем перечисленные десятичные числа преобразуют (кодируют) в последовательность единиц и нулей.

Первое представление об аналоговом и цифровом способах хранения и распространения информации можно получить, рассматривая два способа записи звуковых сигналов: аналоговую и цифровую аудиозаписи.

При аналоговой аудиозаписи непрерывный электрический сигнал, формируемый источником звука на выходе микрофона, с помощью магнит­ной головки наносится на движущуюся магнитную ленту. Недостатком аналогового способа обработки информации является то, что копия бывает все­гда хуже оригинала.

При цифровой аудиозаписи используется процесс выборки, заключающийся в периодическом измерении уровня (громкости) аналогового зву­кового сигнала (например, поступающего с выхода микрофона) и превраще­нии полученного значения в последовательность двоичных чисел. Для пре­образования аналогового сигнала в цифровой используется специальный конвертор, называемый аналогово-цифровой преобразователь (АЦП). Сигнал на выходе АЦП представляет собой последовательность двоичных чисел, которая может быть записана на лазерный диск или обработана ком­пьютером. Обратная конверсия цифрового сигнала в непрерывный сигнал осуществляется с помощью цифроаналогового преобразователя (ЦАП).

Качество аналогово-цифрового преобразования характеризует пара­метр, называемый разрешением. Разрешение— это количество уровней квантования, используемых для замены непрерывного аналогового сигнала цифровым сигналом. Восьмиразрядная выборка позволяет получить только 256 различных уровней квантования цифрового сигнала, а шестнадцатираз­рядная выборка — 65 536 уровней.

Еще один показатель качества трансформации непрерывного сигнала в цифровой сигнал — это частота дискретизации — количество преобразо­ваний аналог-цифра (выборок), производимое устройством в одну секунду.

Этот показатель измеряют килогер­цами (килогерц — тысяча выборок в секунду). Типичное значение час­тоты дискретизации современных лазерных аудиодисков — 44,1 кГц.

Имеется тенденция перехода к единому цифровому представлению всех видов информации. Глобальная сеть Интернет претендует на то, чтобы объединить все средства вещания и коммуникации, компьютерные, телефон­ные, радио- и видеосети, связав их в единое «киберпространство».

Информационные процессы.

Каждый из нас слышал, что информацию можно собирать, хранить, передавать, обрабатывать и использовать. Наглядный пример информационной системы — зрение. Глаз собирает информацию. В нервной ткани глаза информация сложным образом преобразуется и передается в зрительные отделы головного мозга. Здесь она подвергается дальнейшей обработке и результат обработки немедленно используется: к нашим мышца поступают сигналы – информация.

Другой пример — система терморегуляции человека. Наша кожа содержит много клеток-датчиков.

— Продолжите рассказ об этой информационной системе.

Мы записывали определение информатики в тетрадь. Эта процедура включает несколько этапов.

  • Кодирование. Лектор выразил хранящееся в памяти определение с помощью слов.

  • Передача. С помощью колебаний воздуха и световых волн он передал сообщение.

  • Накопление. Студенты записали в тетрадь.

  • Обработка. Расставили необходимые знаки препинания.

Заметим, что информация не может существовать без физического носителя (мозг, звук, бумага).

Рассмотрим теперь каждый процесс в отдельности.

Кодирование— это представление информации в виде какой-либо последовательности сигналов. Любая работа с информацией требует ее кодирования. Одну и ту же информацию можно кодировать по-разному. Кодирование сигнала СОС может быть такимSOSили таким — · —. Один из наиболее простых и надежных способов — двоичное кодирование. При этом используются всего два сигнала. Пример — азбука Морзе.

Передачаинформации осуществляется по каналам связи с помощью каких-либо носителей. Например, человеческая речь распространяется в воздухе с помощью звуковых волн, информация от телецентра распространяется тоже в воздухе (хотя может распространяться и в вакууме) с помощью электромагнитных волн и д.т. В любом реальном канале связи обязательно присутствует шум — мешающее воздействие.

Для накопленияинформации используют долговременные носители: скалы (наскальные рисунки — хоть и примитивное, но накопление информации), книги (и бумага вообще), виниловые пластинки для накопления звуковой информации, магнитная лента, магнитные диски (гибкие и жёсткие),CDдиски.

Обработка— это внесение изменений в имеющуюся информацию (выполнение арифметических действий, исправление ошибок в сочинении, оформление результатов лабораторного опыта и т.д.)

Количество информации.

С позиции каждого отдельного человека количество информации, со­держащееся в каком-либо сообщении, — субъективная величина.

Объективная количественная мера информации может быть введена на основе вероятностной трактовки информационного обмена.

Этот способ измерения количества информации впервые предложил в 1948 г. К. Шеннон. По К. Шеннону, информация— это сведения, умень­шающие неопределенность (энтропию), существовавшую до их получения.

Количественное описание информации базируется на вероятностном подходе. За единицу информации принимается один бит. Это такое количество информации, получаем в результате реализации одного из двух равновероятных событий, например, при бросании монеты. Термин "бит" произошел от выражения binary digit, что означает "двоичная цифра", то есть принимающая значение 0 или 1.

Один бит информации получает человек, когда он узнает опаздывает с прибытием нужный ему поезд или нет, был ночью мороз или нет, присутствует на лекции студент Иванов или нет и т. д.

Таким образом, применительно к ЭВМ на одном проводе можно реализовать два взаимоисключающих события: есть напряжение и нет напряжения. Следовательно, одним проводом можно передать 1 бит информации.

Более крупная единица информации — байт — равна 8 бит. Проверка присутствия или отсутствия на лекции 24 студентов дает лектору три байта информации. Еще более крупная единица информации — 1 Кбайт — равна 1024 байтам. Далее— 1 Мбайт равен 1024 Кбайтам, 1 Гбайт равен 1024 Мбайтам, а 1 Тбайт равен 1024 Гбайтам.

Для измерения больших объемов информации применяют кратные единицы информации:

1 байт = 8 бит;

1 килобайт (Кб) = 1024 байт;

1 Мегабайт (Мб) = 1024 Кб = 1048576 байт;

1 Гигабайт (Гб) = 1024 Мб = 1048576 Кб.