- •Введение.
- •Основные понятия физики полимеров и КМ
- •Структура полимерных КМ
- •Теория перколяции (протекания)
- •Анизотропная перколяция
- •Наполнители для композиционных материалов
- •Дисперсные наполнители
- •Порошки металлов
- •Графит
- •Технический углерод (сажа)
- •Фуллерены и фуллерит
- •Титанат бария
- •Ферриты
- •Наноразмерные наполнители
- •Непрерывные волокна и ткани
- •Углеродные волокна
- •Металлические волокна
- •Композитные волокна
- •Полимерные матрицы для композиционных материалов
- •Методы получения композиционных материалов
- •Молекулярные композиты
- •Нанокомпозиты
- •Методы получения полимерных нанокомпозитов
- •Диэлектрические свойства полимеров и КМ
- •Соотношения электростатики
- •Молекулярная поляризуемость
- •Относительная диэлектрическая проницаемость полимеров
- •Неполярные полимеры
- •Полимеры с низкой диэлектрической проницаемостью
- •Диэлектрическая релаксация
- •Комплексная диэлектрическая проницаемость и диэлектрические потери
- •Термическая активация дипольной релаксации
- •Кооперативная дипольная релаксация в полимерах
- •Диэлектрическая релаксация в твердых полимерах
- •Электродная поляризация
- •Влияние формы частиц наполнителя
- •Анизотропные композиты
- •Исследование фазовых и др. переходов с помощью теплофизических методов
- •Горение полимеров
- •Снижение горючести полимерных материалов
- •Использование нанонаполнителей
- •Рекомендованная литература
- •Литература для углубленного изучения
33
где Pm коэффициент проницаемости матрицы, ϕf – объемная доля наполнителя, α – коэффициент формы частиц наполнителя. При этом для достижения требуемого эффекта необходимы небольшие концентрации наполнителя.
Методы получения полимерных нанокомпозитов
Высокая поверхностная энергия и малый размер наночастиц требуют модификации традиционных способов смешения и разработки новых, специально приспособленных для преодоления указанных ограничений.
¾Так, смешение в растворе обеспечивает эффективное дезагрегирование нанотрубок. Однако этот метод неприменим для нерастворимых полимеров.
¾Смешение в расплаве неэффективно в плане разрушения агрегатов наночастиц, но наиболее применимо для крупномасштабного производства.
¾Полимеризация in situ обеспечивает сильное взаимодействие наполнителя
иматрицы, что требуется в ряде случаев.
¾Использование термореактивных матриц аналогично смешению в растворе.
¾Электроформование позволяет получать нити и волокна.
Вряде случаев модификация и интенсификация традиционных способов смешения позволяет достичь желаемого результата. Так, например использование сверхкритических жидкостей (CO2) в экструдере позволяет снизить вязкость расплава и эффективно диспергировать нанонаполнитель:
34
Аналогичного результата можно достичь, используя ультразвуковую интенсификацию экструзионного процесса:
Для более полной эксфолиации (разделение на элементарные слои) слоистых силикатов в расплаве используют добавление воды и ПАВ:
35
OTM (октадецил триметиламоний хлорид).
Среди новых способов формования нанокомпозитов следует отметить метод послойного формования, схема которого приведена ниже:
Метод набухания используется для введения нанотрубок в тонкий поверхностный слой полимера для придания антистатических свойств и повышения трещиностойкости.
