- •Введение.
- •Основные понятия физики полимеров и КМ
- •Структура полимерных КМ
- •Теория перколяции (протекания)
- •Анизотропная перколяция
- •Наполнители для композиционных материалов
- •Дисперсные наполнители
- •Порошки металлов
- •Графит
- •Технический углерод (сажа)
- •Фуллерены и фуллерит
- •Титанат бария
- •Ферриты
- •Наноразмерные наполнители
- •Непрерывные волокна и ткани
- •Углеродные волокна
- •Металлические волокна
- •Композитные волокна
- •Полимерные матрицы для композиционных материалов
- •Методы получения композиционных материалов
- •Молекулярные композиты
- •Нанокомпозиты
- •Методы получения полимерных нанокомпозитов
- •Диэлектрические свойства полимеров и КМ
- •Соотношения электростатики
- •Молекулярная поляризуемость
- •Относительная диэлектрическая проницаемость полимеров
- •Неполярные полимеры
- •Полимеры с низкой диэлектрической проницаемостью
- •Диэлектрическая релаксация
- •Комплексная диэлектрическая проницаемость и диэлектрические потери
- •Термическая активация дипольной релаксации
- •Кооперативная дипольная релаксация в полимерах
- •Диэлектрическая релаксация в твердых полимерах
- •Электродная поляризация
- •Влияние формы частиц наполнителя
- •Анизотропные композиты
- •Исследование фазовых и др. переходов с помощью теплофизических методов
- •Горение полимеров
- •Снижение горючести полимерных материалов
- •Использование нанонаполнителей
- •Рекомендованная литература
- •Литература для углубленного изучения
19
деятельности. Они имеют отношение к физике, химии, математике, биологии, медицине и архитектуре. Неослабевающий интерес поддерживается перспективами применения фуллеренов, фуллеритов и фуллеридов в технике, электронике, энергетике и машиностроении.
Титанат бария
Самым распространенным сегнетоэлектрическим наполнителем, т.е. наполнителем, имеющим спонтанную поляризацию, является титанат бария (BaTiO3), который получают сплавлением титанового ангидрида и карбоната бария. Он выпускается в виде порошка серого или темно желтого цвета или в виде кристаллов, имеющих форму куба или восьмигранника.
Титанат бария представляет собой диэлектрик с электропроводностью 10 11 10 13 Ом1см1 и высоким уровнем диэлектрической проницаемости (порядка 2 3 тысяч). Плотность титаната бария составляет 5,6 5,9 г/см3. Титанат бария находит наиболее широкое применение эпоксидных компаундах электротехнического назначения, обладающих стабильными диэлектрическими свойствами при высокой диэлектрической проницаемости и низких диэлектрических потерях.
Ферриты
Основным продуктом для получения ферритов является оксид железа Fe2O3. Другими компонентами, входящими в состав ферритов, являются оксиды или карбонаты цинка, марганца, стронция, свинца и других металлов, определяющие жесткость ферритов. Плотность ферритов составляет величину 5 6 г/см3. Магнитные свойства зависят от состава феррита, условий получения и дефектности структуры (пористости).
Наноразмерные наполнители
В последние годы все более важную роль начинают играть наполнители с размером частиц от нескольких нанометров до десятков нанометров, применяющиеся для приготовления нанокомпозитов. Наиболее часто используются следующие типы наноразмерных наполнителей:
•Органоглины на основе монтмориллонита Montmorillonite organoclays (MMT)
•Углеродные нановолокна Carbon nanofibers (CNFs)
•Углеродные нанотрубки Carbon nanotubes [многостенные (MWNTs), тонкие (SDNTs),
иодностенные (SWNTs)]
•Нанооксид кремния (N silica)
•Нанооксид алюминия Nanoaluminum oxide (A12O3)
•Нанооксид титана (TiO2)
•Нанометаллические частицы
Непрерывные волокна и ткани
Для получения КМ с электрофизическими свойствами используются углеродные, металлические и композитные волокна.
20
Углеродные волокна
Уникальные свойства углеродных волокон предопределяют благоприятную перспективу их промышленного использования. Свойства углеродных волокон определяются видом исходного сырья, условиями получения, дополнительными специальными обработками и другими факторами.
Основные исходные материалы для получения углеродных волокон органические волокна (полиакрилонитрильные и гидратцеллюлозные). Углеродные волокна получаются из них специальной термической обработкой, при которой происходит окисление и карбонизация. В зависимости от температуры обработки может меняться прочность и электрические свойства получаемых волокон. Переход от органического волокна к углеродному в ходе высокотемпературной термической обработки сопровождается образованием фактически нового полимера с развитой пространственной структурой сетки, где все полимерные молекулы химически связаны между собой. Кроме этого происходят существенные изменения в характере распределения электронов в макромолекулах. Если исходные волокна представляют собой диэлектрики, то углеродные волокна это ярко выраженные проводники с электропроводностью на уровне 10 1 102 Ом1см1.
К замечательной особенности углеродных волокон относится их низкая плотность. Она составляет величину порядка 2 г/см3.
Металлические волокна
Промышленность выпускает широкий ассортимент металлических волокнистых наполнителей, способных удовлетворить любым требованиям, возникающим при изготовлении металлополимерных композиций. Преимущества металлических волокон являются высокая электропроводность, ее однородность по длине и диаметру волокна, строго контролируемые форма поперечного сечения (которая может быть задана очень сложной) и размерами. Недостатками металлических волокон являются высокие стоимость и плотность. Стоимость колеблется в среднем от 2 до 100 долларов за кг.
Свойства металлических волокон определяются как исходным материалом, так и технологией изготовления. Форма волокон, однородность их сечения, шероховатость поверхности и ее состав определяются технологией производства волокон, тогда как их химические, физические и механические свойства практически не отличаются от свойств исходного материала.
Для производства волокон помимо процессов волочения, применяемых в производстве проволоки в течение многих десятилетий, в настоящее время используются новые перспективные методы: нанесение металлов гальваническим способом или напыление металлов из паровой фазы на подложку, разложение неорганических соединений, формование из суспензии. С помощью обычных методов текстильной переработки из металлических волокон получают жгуты, пряжу, нити, нетканые материалы, плетеные и тканые изделия.
Композитные волокна
В последние годы все большее распространение получает метод модификации волокон путем введения в его состав значительных количеств минеральных наполнителей
