
- •Электричество и постоянный ток Электронный учебник по физике кгту-кхти. Кафедра физики. Старостина и.А., Кондратьева о.И., Бурдова е.В.
- •Оглавление
- •Электричество и постоянный ток
- •1. Электростатика.
- •1.1. Электрические заряды. Закон сохранения электрического заряда.
- •1.2. Закон Кулона.
- •1. 3. Электростатическое поле и его напряженность.
- •1.4. Графическое изображение электростатических полей
- •1. 5. Принцип суперпозиции электростатических полей.
- •1.6. Электростатическое поле электрического диполя.
- •1.7. Поток вектора напряженности электростатического поля
- •1. 8. Теорема Гаусса для электростатического поля в вакууме.
- •1. 9. Применение теоремы Гаусса для расчета напряженности электростатического поля.
- •1 Рис.1.12. К определению работы перемещения заряда в электростатическом поле. .10. Работа сил электростатического поля при перемещении заряда.
- •1.11. Циркуляция вектора напряженности электростатического поля.
- •1.12. Потенциальная энергия и потенциал электростатического поля.
- •1.13. Связь между потенциалом и напряженностью электростатического поля. Эквипотенциальные поверхности.
- •1.14. Вычисление разности потенциалов по напряженности поля
- •1.15. Диэлектрики в электрическом поле
- •1.15.1. Типы диэлектриков. Поляризация диэлектриков.
- •1.15.2. Вектор поляризации и диэлектрическая восприимчивость диэлектриков
- •1.15.3. Напряженность поля в диэлектрике
- •1.15.4. Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике
- •1.15.5. Сегнетоэлектрики
- •1.15.6. Пьезоэлектрический эффект.
- •1. 16. Проводники в электростатическом поле
- •1. 17. Электрическая емкость уединенного проводника
- •1. 18. Взаимная электроемкость. Конденсаторы
- •1. 19. Энергия заряженного уединенного проводника, конденсатора. Энергия электростатического поля
- •2. Постоянный электрический ток
- •2.1. Электрический ток, сила и плотность тока
- •2.2. Сторонние силы. Электродвижущая сила и напряжение
- •2.3. Закон Ома для участка и полной замкнутой цепи
- •2.4. Сопротивление проводника. Явление сверхпроводимости.
- •2.5. Работа и мощность тока. Закон Джоуля-Ленца.
- •2. 6. Правила Кирхгофа для разветвленных цепей.
- •3. Электрические токи в металлах, вакууме и полупроводниках
- •3.1. Опытные доказательства электронной проводимости металлов.
- •3.2. Основные положения классической теории электропроводности металлов
- •3. 3. Работа выхода электрона из металла. Контактная разность потенциалов.
- •3. 4. Термоэлектрические явления
- •3. 5. Электрический ток в вакуумном диоде
- •3. 6. Собственная и примесная проводимость полупроводников.
- •3.7. Элементы современной квантовой или зонной теории твердых тел.
3. 6. Собственная и примесная проводимость полупроводников.
Кроме диэлектриков и проводников имеется класс веществ, у которых электропроводность существенно зависит от температуры, называемые полупроводниками. .К полупроводникам относятся некоторые элементы IV, V и VI групп Периодической системы элементов Менделеева (например, Si, Ge, As, Se, Te) и ряд химических природных и синтезированных соединений. По электрическим свойствам полупроводники занимают промежуточное положение между проводниками и диэлектриками. Например, удельное сопротивление у металлов -мет10-8-10-6 Омм, диэлектриков - диэл108-1013 Омм, полупроводников - 10-5-108 Омм.
Рис.3.6.
Собственная проводимость германия.
К собственным полупроводникам относятся химически чистые вещества Ge, Se, а также многие соединения: JnSb, GaAs и др. Их проводимость называется собственной. Рассмотрим кристалл германия. Каждый атом в кристаллической решетке Ge связан четырьмя двухэлектронными ковалентными связями с соседними атомами (рис.3.6). Черными кружочками обозначены валентные электроны. При 0 К кристалл германия является диэлектриком, т.к. в нем нет свободных носителей заряда. При повышении температуры тепловые колебания решетки приводят к разрыву некоторых валентных связей и электроны,, покинувшие свое место, становятся свободными. Это вакантное место, обладающее избыточным положительным зарядом, называется дыркой, которая может быть занята каким-либо другим свободным электроном. Движение электронов и дырок по кристаллу в отсутствие электрического поля является хаотическим. Под действием электрического поля в кристалле начинается направленное перемещение электронов против поля и дырок по полю, то есть в кристалле появляется электрический ток. Таким образом, проводимость в чистых полупроводниках осуществляется двумя типами зарядов - электронами и дырками, ее называют собственной проводимостью, ее величина зависит от температуры.
Проводимость полупроводника, обусловленная примесями, называется примесной проводимостью, а сами полупроводники - примесными полупроводниками.
Рис.3.7.
Образование примесной электронной
проводимости на примере германия с
примесью мышьяка.
Если в кристалл Ge ввести небольшое количество атомов трехвалентного бора B, то для образования четырех валентных связей в решетке Ge (рис.3.8) атому бора не будет хватать одного электрона. Недостающий четвертый электрон может быть захвачен у соседнего атома Ge, у которого, в результате этого, образуется положительная дырка. Присоединив электрон, атом бора превращается в отрицательный ион, не способный к перемещению. Дырки, напротив, не остаются неподвижными. Захватывая электроны соседних атомов Ge, они перемещаются по кристаллу. В электрическом
Рис.3.8.
Образование примесной дырочной
проводимости на примере германия с
примесью бора.