
- •Технические средства контроля в системах управления технологическими процессами Учебное пособие
- •Технические средства контроля в системах управления технологическими процессами
- •1. Контроль давления
- •1.1. Определение понятия «давление», и соотношение между единицами давления
- •Соотношение между единицами давления
- •1.2. Классификация приборов для измерения давления по виду измеряемого давления
- •1.3. Классификация приборов для измерения давления по принципу действия
- •1.4. Классификация пружинных приборов для измерения давления по типу чувствительного элемента
- •1.5. Понятие «поверка» рабочего измерительного прибора
- •1.6. Классификация погрешностей измерения
- •1.7. Абсолютная, относительная, приведённая погрешности измерительного прибора. Вариация показаний прибора
- •1.8. Класс точности приборов
- •1.9. Устройство, принцип действия и область применения приборов с упругими чувствительными элементами
- •1.10. Возможные источники систематических погрешностей приборов с упругим чувствительным элементом
- •1.11. Устройство и принцип действия грузопоршневого манометра мп –60
- •1.12. Устройство и принцип действия датчика давления «Сапфир-22 ди»
- •2. Контроль температуры
- •2.1. Термоэлектрические преобразователи
- •2.1.1. Принцип измерения температуры термоэлектрическим методом. Конструкция термопары
- •2.1.2. Типы стандартных термопар и диапазоны изменяемых температур для каждого их вида
- •2.1.3. Термопреобразователи с унифицированным токовым выходным сигналом (тхау)
- •2.1.4. Применение термоэлектродных проводов и их свойства
- •2.1.5. Измерительные приборы применяемые комплексно с термопарами, для измерения температуры
- •2.1.6. Принцип действия магнитоэлектрического милливольтметра
- •2.1.7. Схема, исключающая влияние отклонений температуры свободного спая термопары на пока-зания милливольтметра, электрон-ного потенциометра
- •2.1.8. Сущность нулевого (компенсационного) метода измерения тэдс
- •2.1.9. Назначение всех элементов электронной функциональной схемы автоматического потенциометра
- •2.2. Термопреобразователи сопротивления
- •2.2.1. Принцип работы термопреобразователя сопротивления. Диапазон измеряемых температур для каждого типа термопреобразователя сопротивления
- •2.2.2. Устройство платиновых и медных термопреобразователей сопротивления
- •2.2.3. Отличие терморезисторов от металлических термопреобразователей сопротивления
- •2.2.4. Градуировка термопреобразователя сопротивления. Градуировки технических платиновых и медных термопреобразователей сопротивления
- •2.2.5. Измерительные приборы, применяемые в комплекте с термопреобразователями сопротивления
- •2.2.6. Уравновешенные мосты
- •2.2.7. Преимущества трехпроводной схемы подсоединения термопреобразователя сопротивления
- •2.2.8. Автоматический уравновешенный мост. Назначение основных элементов схемы. Принцип работы прибора
- •2.2.9. Неуравновешенные мосты
- •2.2.10. Термопреобразователи с унифицированным токовым выходным сигналом. (тспу, тсму)
- •2.3. Манометрические термометры
- •3. Контроль расхода
- •3.1.Физический смысл понятий «расход» и «количество»
- •3.2. Приборы для измерения расхода и количества вещества
- •3.3. Основные принципы измерения расхода
- •3.4. Классификация приборов для измерения расхода и количества
- •3.5. Градуировочная характеристика средств измерения
- •3.6. Сущность измерения расхода по методу переменного перепада давления
- •3.6.1. Типы сужающих устройств, регламентированные рд 50-213-80
- •3.7. Дифманометр типа дм
- •3.8. Источники возможных погрешностей комплекта – расходомера при измерении расхода методом переменного перепада давлений
- •3.9. Расходомеры обтекания. Ротаметры
- •3.9.1. Устройство и принцип действия промышленного поплавкового расходомера типа рэ
- •Внутри диафрагмы переме-щается конусный поплавок 3, жестко насаженный на шток 4.
- •3.10. Кориолисовы (массовые) расходомеры
- •3.11.Вихревые расходомеры
- •4. Контроль уровня
- •4.1. Методы измерения уровня жидкости, применяемые в химической промышленности
- •4.2. Принцип работы емкостного уровнемера
- •4.3. Методы измерения сыпучих сред
- •4.4. Радарные измерители уровня
- •4.5. Метод направленного электромагнитного излучения
- •Библиографический список
2.1.2. Типы стандартных термопар и диапазоны изменяемых температур для каждого их вида
В соответствии с ГОСТ 6616-94 [5] известны следующие виды термопар (табл. 1).
Таблица 1
Тип термопары |
Буквенное обозначе-ние НСХ* |
Пределы измеряемых температур | ||
нижний |
верхний |
кратко-временно | ||
Медь-константановая ТМКн |
T |
-200 |
350 |
400 |
Хромель-копелевая ТХК |
L |
-200 |
600 |
800 |
Хромель-константановая ТХКн |
E |
-200 |
700 |
900 |
Железо-константановая ТЖКн |
J |
-200 |
750 |
900 |
Хромель-алюмелевая ТХА |
K |
-200 |
1200 |
1300 |
Нихросил-нисиловая ТНН |
N |
-270 |
1200 |
1300 |
Платинородий-платиновые ТПП13, ТПП10 |
R,S |
0 |
1300 |
1600 |
Медь-копелевая ТМК |
М |
-200 |
100 |
- |
Сильх-силиновая ТСС |
I |
0 |
800 |
- |
Платинородий-платинородиевая |
B |
600 |
1700 |
- |
Вольфрамрений-вольфрамрени-евые |
А-1,А-2, А-3 |
0 |
2200 |
2500 |
*НСХ – номинальная статическая характеристика
2.1.3. Термопреобразователи с унифицированным токовым выходным сигналом (тхау)
Термопреобразователи обеспечивают непрерывное преобразование температуры в унифицированный токовый сигнал и предназначены для работы в системах автоматического контроля, регулирования и управления технологическими процессами.
Измерительный преобразователь (рис. 2) сигналов первичного преобразователя в унифицированный токовый выходной сигнал размещен в головке термопреобразователя и содержит компенсатор нелинейности сигнала первичного преобразователя и компенсатор температуры холодного спая (ТХАУ).
Рис.
2. Схема термопреобразователя ТХАУ/1-0288Ех
Основные характеристики: диапазон измерения температуры от 0°С до +1100°С; предел допускаемой основной погрешности 0,75%; выходной сигнал – (4-20) мА, (0-5) мА; напряжение питания – (18-36)В; зависимость выходного сигнала от измеряемой температуры – линейная; схема включения – двухпроводная, сопротивление нагрузки с учетом линии связи – 1,0 кОм.
2.1.4. Применение термоэлектродных проводов и их свойства
Правильное измерение температуры возможно лишь при постоянстве температуры холодных спаев. Соединительные провода предназначены для удаления холодных спаев термопары на возможно большее расстояние от объекта измерения, т.е. от зоны с меняющейся температурой [1].
Соединительные провода должны быть термоэлектрическими, подобно термоэлектродам термопары, их целесообразно называть термоэлектродными проводами. Термоэлектродные провода для термопар из неблагородных металлов выполняются из тех же металлов. Для термопар из благородных металлов термоэлектродные провода выполняются из сплава (99,4% Cu + 0,6%Ni).
2.1.5. Измерительные приборы применяемые комплексно с термопарами, для измерения температуры
Для измерения ТЭДС в комплектах термоэлектрических термометров применяют милливольтметры и потенциометры.
Милливольтметры делятся на переносные и стационарные, а потенциометры — на лабораторные, переносные и автоматические. Милливольтметры – это магнитоэлектрические приборы: их работа основана на взаимодействии проводника, по которому течет ток в магнитном поле постоянного магнита [1].
Принцип потенциометрического метода измерения основан на уравновешивании (компенсации) измеряемой ТДЭС известной разностью потенциалов, образованной вспомогательным источником тока.