
- •Технические средства контроля в системах управления технологическими процессами Учебное пособие
- •Технические средства контроля в системах управления технологическими процессами
- •1. Контроль давления
- •1.1. Определение понятия «давление», и соотношение между единицами давления
- •Соотношение между единицами давления
- •1.2. Классификация приборов для измерения давления по виду измеряемого давления
- •1.3. Классификация приборов для измерения давления по принципу действия
- •1.4. Классификация пружинных приборов для измерения давления по типу чувствительного элемента
- •1.5. Понятие «поверка» рабочего измерительного прибора
- •1.6. Классификация погрешностей измерения
- •1.7. Абсолютная, относительная, приведённая погрешности измерительного прибора. Вариация показаний прибора
- •1.8. Класс точности приборов
- •1.9. Устройство, принцип действия и область применения приборов с упругими чувствительными элементами
- •1.10. Возможные источники систематических погрешностей приборов с упругим чувствительным элементом
- •1.11. Устройство и принцип действия грузопоршневого манометра мп –60
- •1.12. Устройство и принцип действия датчика давления «Сапфир-22 ди»
- •2. Контроль температуры
- •2.1. Термоэлектрические преобразователи
- •2.1.1. Принцип измерения температуры термоэлектрическим методом. Конструкция термопары
- •2.1.2. Типы стандартных термопар и диапазоны изменяемых температур для каждого их вида
- •2.1.3. Термопреобразователи с унифицированным токовым выходным сигналом (тхау)
- •2.1.4. Применение термоэлектродных проводов и их свойства
- •2.1.5. Измерительные приборы применяемые комплексно с термопарами, для измерения температуры
- •2.1.6. Принцип действия магнитоэлектрического милливольтметра
- •2.1.7. Схема, исключающая влияние отклонений температуры свободного спая термопары на пока-зания милливольтметра, электрон-ного потенциометра
- •2.1.8. Сущность нулевого (компенсационного) метода измерения тэдс
- •2.1.9. Назначение всех элементов электронной функциональной схемы автоматического потенциометра
- •2.2. Термопреобразователи сопротивления
- •2.2.1. Принцип работы термопреобразователя сопротивления. Диапазон измеряемых температур для каждого типа термопреобразователя сопротивления
- •2.2.2. Устройство платиновых и медных термопреобразователей сопротивления
- •2.2.3. Отличие терморезисторов от металлических термопреобразователей сопротивления
- •2.2.4. Градуировка термопреобразователя сопротивления. Градуировки технических платиновых и медных термопреобразователей сопротивления
- •2.2.5. Измерительные приборы, применяемые в комплекте с термопреобразователями сопротивления
- •2.2.6. Уравновешенные мосты
- •2.2.7. Преимущества трехпроводной схемы подсоединения термопреобразователя сопротивления
- •2.2.8. Автоматический уравновешенный мост. Назначение основных элементов схемы. Принцип работы прибора
- •2.2.9. Неуравновешенные мосты
- •2.2.10. Термопреобразователи с унифицированным токовым выходным сигналом. (тспу, тсму)
- •2.3. Манометрические термометры
- •3. Контроль расхода
- •3.1.Физический смысл понятий «расход» и «количество»
- •3.2. Приборы для измерения расхода и количества вещества
- •3.3. Основные принципы измерения расхода
- •3.4. Классификация приборов для измерения расхода и количества
- •3.5. Градуировочная характеристика средств измерения
- •3.6. Сущность измерения расхода по методу переменного перепада давления
- •3.6.1. Типы сужающих устройств, регламентированные рд 50-213-80
- •3.7. Дифманометр типа дм
- •3.8. Источники возможных погрешностей комплекта – расходомера при измерении расхода методом переменного перепада давлений
- •3.9. Расходомеры обтекания. Ротаметры
- •3.9.1. Устройство и принцип действия промышленного поплавкового расходомера типа рэ
- •Внутри диафрагмы переме-щается конусный поплавок 3, жестко насаженный на шток 4.
- •3.10. Кориолисовы (массовые) расходомеры
- •3.11.Вихревые расходомеры
- •4. Контроль уровня
- •4.1. Методы измерения уровня жидкости, применяемые в химической промышленности
- •4.2. Принцип работы емкостного уровнемера
- •4.3. Методы измерения сыпучих сред
- •4.4. Радарные измерители уровня
- •4.5. Метод направленного электромагнитного излучения
- •Библиографический список
2.2.5. Измерительные приборы, применяемые в комплекте с термопреобразователями сопротивления
В качестве измерительных приборов термометров сопротивления применяются логометры, а также уравновешенные и неуравновешенные мосты. Для полупроводниковых термосопротивлений измерительными приборами обычно служат неуравновешенные мосты [1].
Логометры — это магнитоэлектрические приборы, подвижная система которых состоит из двух жесткоскрепленных между собой рамок, расположенных под некоторым углом друг другу (в предельном случае в одной плоскости).
Угол поворота такой подвижной системы есть функция отношения токов в обеих рамках:
= f(I1/ I2),
где I1, I2 - токи, протекающие по рамкам.
В определенных пределах колебания напряжения источника питания не влияют на показания прибора [1].
Таким
образом, в логометре совмещены достоинства
уравновешенных (независимость от
колебаний напряжения источника питания)
и неуравновешенных мостов (непосредственное
измерение).
Рассмотрим
схему логометра (рис. 11). Постоянный
магнит снабжен полюсными наконечникамиN и
S
с эллиптическими выточками. Центры
выточек полюсных наконечников смещены
относительно центра сердечника. Между
полюсными наконечниками расположен
цилиндрический сердечник из мягкой
стали, вокруг которого вращается
подвижная система из двух рамок - R1
и R2.
К рамкам
прикреплена стрелка, перемещающаяся
вдоль шкалы, проградуированной в
градусах. Воздушный зазор между полюсными
наконечниками и сердечником неравномерен.
Поэтому магнитная индукция меняется
(наибольшее значение в середине полюсных
наконечников, наименьшее - у края),
являясь функцией угла поворота от
среднего положения.
К рамкам подводится ток от общего источника питания (сухой батареи). В рамку R1 ток поступает через постоянное сопротивление R, в рамку R2— через сопротивление термометра Rt. Направление токов I1 и I2 таково, что вращающие моменты рамок оказываются направленными навстречу один другому и соответственно равны:
M1 = c1B1I1; M2 = с2B2I2,
где с1 и с2 - постоянные, зависящие от геометрических размеров и числа витков рамок; B1 и В2 — магнитные индукции в зоне расположения рамок [1].
Если сопротивление рамок одинаково и R = Rt, то I1 = I2, т. е. вращающие моменты рамок равны. При этом подвижная система находится в среднем положении.
При изменении сопротивления Rt термометра вследствие нагрева (или охлаждения), через одну из рамок потечет ток большей величины, равенство моментов нарушится, и подвижная система начнет поворачиваться в сторону действия большего момента. При вращении подвижной системы рамка, по которой течет ток большей величины, попадает в зазор с меньшей магнитной индукцией, вследствие чего действующий на нее момент уменьшается. Наоборот, другая рамка входит в зазор с большой магнитной индукцией, и ее момент увеличивается. Вращение рамок продолжается до тех пор, пока их вращающие моменты станут снова равными.
Для рамок одинаковой конструкции из соотношения М1=М2 таким образом имеем:
.
При изменении Rt изменяется отношение I1/I2. Рамки вращаются до тех пор, пока при новом положении рамок отношение В2/В1 не сравняется с соотношением I1/I2.