
- •Бийский технологический институт (филиал)
- •Содержание
- •Введение
- •1 Взрывчатые вещества
- •1.1 Общие сведения о взрывчатых веществах [3–6]
- •1.2 Классификация взрывчатых веществ [36]
- •1.3 Реакции взрывчатого разложения
- •1.4 Общие свойства взрывчатых веществ
- •1.4.1 Чувствительность взрывчатых веществ [4, 7]
- •1.4.2 Стойкость взрывчатых веществ [4, 7]
- •1.5 Действие взрыва на окружающую среду [4]
- •1.6 Понятие о боеприпасах и выстрелах [8]
- •1 − Взрыватель; 2 − заряд взрывчатого вещества; 3 − корпус;
- •4 − Ведущий поясок; 5 − сопло; 6 − твердотопливный реактивный заряд; 7 − боевая часть
- •1.7 Инициирующие взрывчатые вещества [9]
- •1.7.1 Гремучая ртуть
- •1.7.2 Азид свинца
- •1.7.3 Тринитрорезорцинат свинца
- •1.7.4 Тетразен
- •1.8 Средства инициирования
- •1.8.1 Средства воспламенения
- •1 − Колпачок; 2 − покрытие ударного состава; 3 − ударный состав
- •1 − Корпус гильзы; 2 – наковальня; 3 − капсюль-воспламенитель; 4 − затравочные отверстия
- •1.8.2 Средства детонирования
- •1 − Колпачок; 2 – чашечка; 3 – сетка шелковая; 4 – тнрс; 5 – азид свинца; 6 – тетрил; 7 – накольный состав
- •1.9 Бризантные взрывчатые вещества [3]
- •1.9.1 Нитроглицерин [3, 4, 10, 11]
- •1 − Инжектор для подачи водной эмульсии нитроглицерина на фазу
- •1.9.2 Гексоген [3,4]
- •1.9.3 Октоген [3,4]
- •1.9.4 Нитраты целлюлозы [4, 11–16]
- •5 Редуктор; 6 – вертикальный вал; 7 – кронштейн; 8крышка
- •1.9.5 Тротил [3, 4]
- •1.10 Промышленные взрывчатые вещества [4, 17–19]
- •1.10.1 Простейшие гранулированные взрывчатые вещества
- •1.10.2 Взрывчатые смеси аммиачной селитры с тротилом
- •1.10.3 Водосодержащие взрывчатые вещества
- •1.10.4 Эмульсионные взрывчатые вещества (эмулиты)
- •1.10.5 Нитроэфиросодержащие взрывчатые вещества
- •1.10.6 Предохранительные взрывчатые вещества
- •1.10.7 Конверсионные промышленные взрывчатые вещества
- •1.11 Снаряжение боеприпасов взрывчатыми веществами
- •1.12 Применение взрывчатых веществ в народном хозяйстве
- •2 Пороха и сртт
- •2.1 Общие сведения о порохах
- •2.2 Классификация порохов
- •2.3 Дымный порох [4, 11, 19, 38]
- •2.3.1 Свойства дымного пороха
- •2.3.2 Производство дымного пороха [11, 39]
- •2.3.3 Применение дымного пороха
- •2.4 Пироксилиновые пороха [4, 11, 40–42, 87–88]
- •2.4.1 Производство пироксилиновых порохов периодическим методом
- •2.4.2 Производство пироксилиновых порохов непрерывным методом
- •2.5 Особенности технологии производства сферических
- •2.6 Баллиститные пороха [4, 11, 44–46, 89]
- •2.6.1 Изготовление пороховых масс баллиститного типа
- •2.6.2 Переработка пороховых масс баллиститного типа методом проходного прессования
- •2.6.3 Иные способы переработки пороховых масс баллиститного типа
- •2.6.4 Применение баллиститных порохов в народном хозяйстве [18, 19]
- •1 − Буровая вышка; 2 − пиропатрон; 3 − узел воспламенения; 4 − пороховая шашка; 5 − воспламенительный заряд; 6 − нефтяной пласт; 7 − пороховой заряд; 8 − скважина с жидкостью (вода, растворы кислот)
- •1 − Прибор крепежный для измерения давления; 2 − наконечник;
- •3 − Кабель; 4 − головка кабельная; 5 − бронепокрытие; 6 − заглушка;
- •7 − Заряд воспламенительный; 8 − трубка алюминиевая; 9 − пиропатрон; 10 − заряд дополнительный; 11 − заряд многощелевой
- •1 − Газогенератор плазмы; 2 − заряд твердого плазменного топлива;
- •6 − Нагрузка; 7 − магнитная система
- •2.7 Смесевые ракетные твердые топлива
- •1 − Воспламенитель; 2 − обечайка камеры; 3 − заряд сртт;
- •4 − Сопловой блок
- •1 − Защитный кожух; 2 − блок центровочного зеркала; 3− заряд твердого топлива; 4 − теплоизоляционное покрытие; 5 − корпус; 6 − вкладыш; 7 − расширяющаяся часть сопла; 8 − резиновая заглушка;
- •9 − Воспламенительное устройство
- •1 − Теплоизоляция; 2 − заряд твердого топлива; 3 − сопловой блок; 4 − корпус; 5 − воспламенительное устройство
- •1 − Теплоизоляция; 2 − заряд твердого топлива; 3 − сопловой блок; 4 − корпус; 5 − воспламенительное устройство
- •1 − Корпус; 2 − теплозащитное покрытие; 3 − тороидальный воспламенитель; 4 − сопловой блок; 5 − графитовый вкладыш
- •1 − Двигательная установка; 2 − ракета «Союз»
- •1 − Глухой торец камеры сгорания; 2 − заряд тт; 3 − фильтр; 4 − сопло
- •2.7.1 Принципиальный состав сртт и назначение компонентов
- •1 − Окна; 2 − загрузочный люк; 3 − корпус; 4 − защитные мембраны; 5 − выгрузочный люк; 6 − резиновая прокладка; 7 − прижимной фланец
- •1 − Привод ротора; 2 − ротор; 3 − загрузочный люк; 4 − лаз с вышибной крышкой; 5 − загрузочное сопло; 6 − коллектор
- •1 − Корпус (сварная рамная конструкция); 2 – дверь для обслуживания привода; 3 – боковой люк; 4 – шарниры поводковой вилки;
- •1 − Термопара; 2 − вал; 3 − редуктор; 4 − люк; 5 − мешалки; 6 − корпус
- •1 − Автоцистерна с пластификатором; 2 − резервуар для хранения пластификатора; 3 − бункер для взвешивания; 4 − резервуар для
- •6 − Дополнительные жидкие ингредиенты; 7 − питатель твердых
- •13 − Дозирующий насос; 14 − вертикальный тигель со смесью;
- •15 − Передвижной бак с премиксом
- •1 − Предварительный смеситель; 2 − шнек предварительного
- •5 − Шнек вакуумного смесителя
- •1 − Вакуум-насос; 2 − емкость порошкообразных компонентов;
- •3 − Циклон; 4 − дозатор сыпучих компонентов; 5 − течка;
- •6 − Импульсный дозатор; 7 − реактор; 8 − фильтр; 9 − дозатор
- •1 − Контейнер окислителя; 2 − реактор жидковязких компонентов;
- •3 − Мерник связующего; 4 − емкость для алюминия; 5 − смеситель;
- •6 − Изложница; 7 − транспортная платформа
- •2.7.3 Методы контроля качества изделий
- •3 Пиротехнические составы
- •3.1 Общие сведения о пиротехнических составах [4, 85, 86, 90]
- •3.2 Классификация пиротехнических составов
- •3.2.1 Осветительные пиротехнические составы
- •3.2.2 Сигнальные пиротехнические составы
- •3.2.3 Трассирующие составы
- •3.2.4 Зажигательные составы
- •3.2.5 Дымовые (маскирующие) составы
- •3.2.6 Пестицидный состав [86–87]
- •3.3 Использование пиротехнических составов в народном
- •1 − Корпус; 2 − головная часть; 3 − шашка с йодистым серебром;
- •4 Вышибной заряд
- •1 − Головная дистанционная трубка; 2 − отверстия для выхода парогазовой смеси; 3 − шашка активного дыма; 4 − пиропороховой двигатель; 5 − сопловой блок; 6 − парашютный отсек
- •1 − Картонная гильза с шашкой; 2 − картонная оболочка;
- •3 − Льдообразующий состав; 4 − пороховой вышибной заряд;
- •5 − Капсюль-воспламенитель
- •1 − Корпус; 2 − пироэлементы; 3 − воспламенительно-разрывной заряд;
- •4 − Усилитель; 5 − замедлительно-воспламенительный узел; 6 − дроссель; 7 − вышибной заряд; 8 − электровоспламенитель
- •1 Корпус; 2 – крышка; 3 – упор; 4 – обтюратор; 5 – пироэлементы;
- •6 Искристо-форсовый состав; 7 – кометный факел; 8 – диафрагма;
- •Литература
2.4.1 Производство пироксилиновых порохов периодическим методом
2.4.1.1 Обезвоживание пироксилина этиловым спиртом
Пироксилин обезвоживается с целью снижения содержания влаги от 28–32 до 2–4 %. Большое количество влаги в пироксилине препятствует его пластификации. Метод основан на вытеснении из пироксилина воды этиловым спиртом. Этот метод был предложен выдающимся русским ученым Д.И. Менделеевым. В процессе обезвоживания пироксилин пропитывается спиртом до 25–28 %, происходит набухание волокон, низкоазотные фракции нитратов целлюлозы и нестойкие примеси растворяются в спирте, вымываются, химическая стойкость пирок-силина повышается.
На процесс обезвоживания пироксилина оказывают влияние следующие факторы:
1. С повышением содержания азота в пироксилине обезвоживание протекает более глубоко и с большей скоростью. Присутствие в пироксилине низкоазотных фракций, растворимых в спирте, приводит к образованию высоковязких растворов, что затрудняет диффузию спирта через массу пироксилина.
2. Наличие в пироксилине примесей затрудняет процесс обезвоживания, так как примеси набухают в спирте, закрывая поры. Следовательно, пироксилин из хлопковой целлюлозы будет обезвоживаться легче, чем из древесной целлюлозы.
3. Спирт высокой крепости может вызвать интенсивное растворение поверхностного слоя пироксилина с образованием высоковязкой пленки. Поэтому процесс обезвоживания пироксилина начинают с применения этилового спирта более низкой концентрации (70–80 объем-ных долей).
4. С повышением температуры спирта обезвоживание ускоряется, так как снижается его вязкость. Оптимальная температура обезвоживания 3040 °С.
Таблица 2 − Рецептуры и свойства составов цветных огней на основе пироксилина
Наименование компонентов и параметров излучения |
Содержание компонентов, %, и значения параметров излучения для состава огня | ||||||
красного |
зеленого |
белого |
желтого |
оранжевого |
голубого |
фиолетового | |
Пироксилин ДФА |
42,0–69,0 |
42,0–60,0 |
50,0–65,0 |
41,0–57,0 |
50,0–61,0 |
54,0–50,0 |
35,0–50,0 |
Цветопламенная добавка |
15,0–25,0 |
15,0–25,0 |
15,0–40,0 |
28,0–39,0 |
20,0–35,0 |
25,0–45,0 |
45,0–55,0 |
Металлическое горючее |
10,0–20,0 |
10,0–20,0 |
10,0–20,0 |
15,0–20,0 |
10,0–15,0 |
5,0–15,0 |
5,0–10,0 |
Усилитель цвета пламени |
6,0–12,0 |
6,0–12,0 |
- |
- |
- |
6,0–10,0 |
- |
Удельная светосумма, кд.с/г |
2940–3010 |
2940–2990 |
2460–2580 |
3650–3710 |
1410–1600 |
100–120 |
680–900 |
Р, % |
92–93 |
72–74 |
42–45 |
90–91 |
92–93 |
60–62 |
68–71 |
, нм |
610–613 |
532–535 |
565–567 |
584–585 |
601–606 |
468–474 |
498–502 |
Пироксилин обезвоживается в вертикальных центрифугах периодического действия с верхней выгрузкой, имеющих две перфорированные обечайки. Пироксилин в мешках по 10 кг каждый загружается в пространство между обечайками, промачивается отработанным спиртом и тщательно уплотняется. Затем на различных режимах вращения (медленном и быстром) в центрифугу подается спирт-ректификат, подогретый до 35 °С.
Отработанный спирт отводится через отверстие в донной части центрифуги. Общая масса загружаемого пироксилина составляет 60–70 кг (на сухую массу), продолжительность обезвоживания 1–2 ч. Качество обезвоживания контролируется по крепости отработанного спирта и по содержанию влаги и спирта в пироксилине.
2.4.1.2 Смешение компонентов и пластификация пороховой массы
Назначение данной стадии – приготовление однородной и пластичной пороховой массы, из которой в последующем будут формоваться пороховые шнуры. На эту стадию поступает пироксилин, содержащий до 4 % воды и 32 % спирта. Стабилизатор химической стой-кости – дифениламин, подается на эту стадию в виде раствора в этиловом эфире. Смешение осуществляется в лопастных смесителях с ру-башками для охлаждения и двумя Z-образными мешалками, вращающимися в противоположных направлениях (рисунок 21), или в перовых мешателях, валы которых имеют вращательное и возвратно-поступательное движение.
Рисунок 21 Смеситель
Через 1–2 мин направление вращения мешалок периодически изменяется. Загрузка смесителя пороховой массой составляет 90–120 кг. Смешение осуществляется в следующей последовательности: в смеситель загружается половина всей массы пироксилина, брак и заливается половина всего растворителя. После перемешивания в течение 5 мин мешалки останавливают и загружают вторую половину пироксилина и растворителя, а также эфир с растворенным дифениламином. После перемешивания в течение 30 мин отбирается проба на анализ качества пластификации. При положительных результатах пороховая масса выгружается в герметичные бидоны по 30 кг.
Необходимые количества спирта и эфира для подачи в смеситель определяются на основе уравнений материального баланса, исходя из следующих условий:
1. Соотношение между спиртом и эфиром составляет от 1:1 до 1:1,5; чаще всего используется соотношение 1:1,1.
2. На 100 массовых частей сухого пироксилина берется следующее количество растворителя: при изготовлении орудийных порохов из смесевого пироксилина СА – 85100 массовых частей; при изготовлении винтовочных порохов из смесевого пироксилина ВА – 90–110 массовых частей.
3. Возвратный брак, поступающий в смеситель, при малом содержании в нем растворителя, подвергается предварительной размочке.
2.4.1.3 Формование пороховых шнуров, их предварительное провяливание и резка на элементы
Формование пороховых шнуров осуществляется путем продавливания пластичной пороховой массы через формующие устройства матрицы (рисунок 22).
Рисунок 22 – Матрица
Размер матриц выбирается с учетом 30%-ной усадки пороховых элементов по диаметру, происходящей после удаления растворителя. В процессе формования происходит уплотнение пороховых элементов, придание им требуемой формы и размеров, а также частичная ориентация макромолекул вдоль направления движения пороховой массы по каналу матрицы. Вследствие ориентации макромолекул возникает анизотропия свойств порохов.
Прессование осуществляется на гидравлических прессах (рису-нок 23), имеющих две вращающиеся изложницы, главный и вспомогательный гидравлические цилиндры с поршнями, установленные на двух массивных колоннах.
Рисунок 23 – Гидравлический пресс
Вспомогательный гидравлический цилиндр служит для подпрессовки пороховой массы под небольшим давлением (1,0–1,5 МПа). Главный гидравлический цилиндр служит для выпрессовывания пороховой массы. Прессование осуществляется в следующей последовательности. Сначала в изложницу вставляется обойма с матрицами, направляющими и фильтрующими дисками. Поверх дисков устанав-ливаются две стальные сетки для задержания инородных включений. Затем в изложницу загружается 30 кг пороховой массы в пять приемов с подпрессовкой давлением около 1,0 МПа. Подпрессовки необходимы для удаления воздуха из пороховой массы, который при сжатии разогревается и может инициировать ее воспламенение. После загрузки пороховой массы в изложницу вставляется пороховая «лепешка», оставшаяся от предыдущего прессования, и медное разрезное обтюрирую-щее кольцо. Подготовленная изложница поворачивается вокруг колонны на 180°, устанавливается соосно с поршнем главной цилиндрической системы и фиксируется с помощью защелки.
Включается главный гидравлический цилиндр, и начинается выпрессовывание пороховых шнуров (пороховых нитей). Пороховые шнуры на выходе из пресса сворачиваются в бухты или подаются на барабаны. Толстосводные шнуры для трубчатого пороха накалываются на рамы. Пороховые нити для винтовочных порохов и тонкосводных орудийных порохов разрываются на отрезки длиной около 3 м и развешиваются на деревянных стержнях. При прессовании пороховых шнуров возможны следующие виды брака:
шнуры с неправильными (смещенными) каналами (образуются в том случае, если иголки в матрице погнуты или установлены неправильно);
расширенные каналы (образуются при высокой скорости прессования);
узкие каналы (образуются при медленном прессовании «жирной» массы, содержащей избыток растворителя);
шнуры с шероховатой поверхностью (образуются при высокой скорости прессования);
шнуры с плохой пластификацией на наружной поверхности и в изломе имеют белые рыхлые включения непластифицированного пироксилина. Этот наиболее часто встречающийся вид брака возникает при плохом обезвоживании пироксилина, при недостатке растворителя, неправильном выборе соотношения между спиртом и эфиром, при повышенной температуре или недостаточном времени смешения.
Предварительное провяливание пороховых шнуров осуществляется после их формования с целью удаления части растворителя и придания им определенной механической прочности. После выхода из пресса пороховые шнуры содержат около 50 % растворителя, являются мягкими и при резке могут легко деформироваться. После предварительного провяливания шнуров в естественных условиях содержание в них растворителя уменьшается до 40–35 %.
Резка пороховых шнуров на элементы осуществляется с учетом 10%-ной усадки по длине в результате удаления растворителя. Длина трубчатых порохов определяется в зависимости от длины зарядной каморы или длины цилиндрической части гильзы. Для крупных калибров орудий длина пороховых трубок принимается равной половине или четверти длины зарядной каморы. Для зерненых и пластинчатых порохов длина пороховых элементов определяется в зависимости от толщины горящего свода 2e1:
зерно с одним каналом – (7–8) 2e1;
зерно с семью каналами – (10–12) 2e1;
пористые пороха без канала – (2–3) 2e1;
ширина пластины – (10–20) 2e1.
Резка пороховых шнуров осуществляется на резательных станках (рисунок 24) с помощью специальных ножей. Скорость подачи шнуров и частота перемещения ножей регулируются в зависимости от требуемой длины пороховых элементов.
Рисунок 24 – Резательный станок
Для резки шнуров могут применяться также резательные станки Разумеева и гильотинный станок Сан-Галли.
При резке возможны следующие виды брака пороховых элементов: заусенцы или зерна с острыми выступающими краями, короткие или длинные зерна, зерна с трещинами и косыми срезами, зерна с заплывшими каналами.
2.4.1.4 Удаление спиртоэфирного растворителя
Операция удаления растворителя в производстве пироксилиновых порохов является одной из наиболее ответственной и самой продолжительной.
Это сложный физико-химический процесс, скорость и характер протекания которого зависит как от внешних факторов (среды и параметров процесса), так и от внутренних (сырья и структуры пороха).
Выпрессованные пороховые шнуры имеют значительное количество растворителя, который необходимо удалить до требуемых норм содержания. На этой фазе производства формируются основные физико-химические параметры порохов, определяющих их эксплуатационные качества: содержание удаляемых (вода), неудаляемых (спиртоэфирный растворитель), геометрические размеры элементов, плот-ность, удельная поверхность. Удаление растворителя идет поэтапно и разбивается на три самостоятельные фазы: провяливание, вымачивание (вымочка), сушка с последующим увлажнением пороха.
Провяливание пороха осуществляется с целью плавного удаления спиртоэфирного растворителя из пороха до содержания не более 15 %.
При медленном удалении растворителя происходит усадка пороха, при этом повышаются его плотность и прочность. Если удаление растворителя происходит слишком быстро, то релаксация макромолекул не успевает протекать и порох сохраняет структуру, характерную для набухших нитратов целлюлозы. При этом происходит недостаточная усадка и в порохе «фиксируется» пористая структура. Такой порох будет иметь большую скорость горения, меньшую плотность. Кроме этого, быстрое удаление спиртоэфирного растворителя из пороха может привести к образованию на поверхности зерен твердой пленки – «корочки», препятствующей дальнейшему удалению растворителя.
Провяливание осуществляется в провялочных шкафах с искусственной циркуляцией воздуха при температуре (30±2) °С и относительной влажности воздуха 60–65 %. Провялочный шкаф имеет 5–10 секций, каждая секция работает самостоятельно. Внутри секции располо-жены полки с решетками, на которые укладываются зерненые пороха в мешках по 11–15 кг на сухую массу. Трубчатые пороха провяливаются на рамах. Воздух после прохождения через массу пороха поступает в холодильник, где большая часть растворителя конденсируется, после чего воздух пропускается через калорифер и снова поступает в шкаф.
Время провяливания составляет от 10 до 50 ч. После провяливания формируются малые партии, и производятся разымка и сортировка пороха. Брак по внешнему виду удаляется путем переборки пороха. Брак по размерам зерненых порохов удаляется путем проведения разымки на наклонных разымочных аппаратах и цилиндрических разымочных аппаратах – аппаратах Моро. Пороха марок 7/7 и крупнее разымке не подвергаются.
Наклонный разымочный аппарат состоит из трех сит: на первом сите задерживаются длинные зерна, на втором нормальные по размерам зерна, а мелочь проходит на третье сито. Пороховая пыль собирается на глухом дне разымочного аппарата. Для ускорения разымки ситам придается возвратно-поступательное движение с помощью криво-шипно-шатунного механизма.
Трубчатые пороха с браком по размерам и внешнему виду отделяются при ручной переборке.
Вымочка пороха в воде проводится с целью удаления летучего растворителя до норм, установленных техническими условиями для конкретной марки пороха. Вымочку производят в бетонных бассейнах длиной 4,5 м, шириной 2,65 м, глубиной 1,8 м. Бассейн имеет ложное дно, под которым проходят трубы с отверстиями для подачи пара с целью подогрева воды. Повышение температуры воды ускоряет процесс вымочки, но при этом возрастают потери стабилизатора химической стойкости дифениламина. На вымочку поступает малая партия пороха: зерненый в мешках по 2530 кг, трубчатый в пучках. В ходе вымочки производится смена воды. Время вымочки составляет от 10 до 200 ч. Специальные пороха, содержащие водорастворимые добавки, вымочке не подвергаются (кроме пористых порохов).
Процесс вымочки контролируется путем измерения температуры и крепости водного раствора спирта. В конце вымочки определяется содержание в порохе неудаляемых летучих веществ. При удовлетворительных результатах анализа из бассейна удаляется вода, порох выгружается и транспортируется на сушку.
Сушка и увлажнение пороха. После вымочки влажность пороха составляет 20–25 %. По техническим условиям содержание удаляемых летучих веществ (влаги) должно находиться в пределах 1,0–1,8 %. Прямой сушкой достигнуть требуемого содержания влаги трудно, поэтому порох сначала пересушивают, а затем увлажняют до требуемых норм.
Процесс сушки основан на пропускании через слой влажного пороха сухого воздуха с температурой 55–75 °С. Наряду с удалением из пороха влаги, в процессе сушки происходит незначительное снижение количества спиртоэфирного растворителя. Скорость процесса сушки зависит от структуры, формы и размеров пороховых элементов, от содержания влаги перед сушкой, от объема, температуры и влажности подаваемого на сушку воздуха.
Сушку пироксилиновых порохов по периодическому способу производят в столовых сушилках. В помещении для сушки располагается несколько столов. Каждый стол состоит из четырех равных отделений, разделенных алюминиевыми бортами. В дно стола к каждому отделению присоединены воздухопроводы для подачи воздуха. Над столом закрепляется вытяжная система. Перед загрузкой пороха в каждое отделение стола укладываются деревянные решетки, которые затем накрываются неплотной тканью. После этого засыпается зерненый порох толщиной слоя около 0,2 м. Трубчатые пороха устанавливаются на решетки пучками вертикально. В каждое отделение загружается около 1 т пороха. Сушка контролируется путем измерения температуры в верхнем, среднем и нижних слоях пороха. Сушка считается законченной, если в верхнем и нижнем слоях пороха температура будет одинаковой и будет отличаться от температуры подаваемого воздуха не более чем на 3–5 °С. Для равномерной и ускоренной сушки пороха через каждые 8–12 ч подача нагретого воздуха прекращается, порох охлаждается до 20–25 °С и перемешивается. Общее время сушки составляет 20–120 ч. По окончании сушки порох охлаждают в течение 30–60 мин, а затем увлажняют в тех же сушилках путем продувания через него влажного воздуха, нагретого до температуры 30–45 °С.
2.4.1.5 Составление общих партий и укупоривание пороха
Для усреднения физико-химических и баллистических свойств пороха производится мешка малых и общих партий. Сначала производится двухкратная мешка малых партий. Затем малые партии подвергаются физико-химическим испытаниям, а винтовочные пороха – физико-химическим и баллистическим испытаниям.
По результатам испытаний малых партий составляется план мешки общей партии, исходя из следующих положений:
толщина горящего свода в общей партии является усредненной величиной толщины горящего свода в малых партиях;
содержание летучих веществ, удаляемых 6-часовой сушкой при температуре 95 °C, после 10 суток выравнивается по всей массе партии (к удаляемым сушкой веществам относится влага);
содержание остаточного растворителя, т.е. летучих веществ, не удаляемых 6-часовой сушкой, практически не выравнивается даже после нескольких месяцев.
При смешении малых партий в общую партию отклонения показателей между отдельными малыми партиями должны быть: для пороха ВТ по толщине свода 0,02 мм, по общему содержанию летучих веществ ±0,4 %; для орудийных порохов средних марок по толщине свода 0,03 мм, по общему содержанию летучих веществ ±0,7 %.
Для мешки выбирают партии, которые имеют меньшую толщину свода, но большее содержание летучих веществ и наоборот. Мешка зерненых порохов осуществляется на аппарате Тарасова (рисунок 25), который состоит:
из воронки, служащей для засыпки пороха;
из распределительного конуса;
из 14 приемных желобов.
Рисунок 25 – Схема аппарата Тарасова
Мешка трубчатых порохов осуществляется, как правило, вручную. После смешения общая партия пороха подвергается полному физико-химическому анализу и баллистическим испытаниям. После получения удовлетворительных результатов порох поступает на укупори-вание в герметическую укупорку.
Укупорка состоит из металлического оцинкованного короба (рисунок 26) с герметической крышкой и деревянного футляра.
Рисунок 26 – Оцинкованный короб
Перед укупориванием короба проверяются на отсутствие кислотности и герметичность. В зависимости от вместимости укупорки масса засыпаемого пороха составляет 50−90 кг. Сверху на порох укладывается ярлык с маркировкой пороха и фамилиями лиц, производивших укупоривание. После этого короб закрывается, и привинчивается крышка футляра, на которую нанесены данные о марке пороха и производственные данные.
2.4.1.6 Исправление некондиционных малых и общих партий
Малые партии могут быть некондиционными по следующим показателям: удаляемые летучие вещества – выше или ниже установленной нормы, а неудаляемые летучие вещества – выше установленной нормы.
При содержании удаляемых летучих веществ выше нормы производят подсушку пороха; при содержании удаляемых летучих веществ ниже нормы – увлажнение; при содержании неудаляемых летучих веществ выше нормы – дополнительную вымочку с последующей сушкой и увлажнением.
Общие партии могут оказаться некондиционными по следующим показателям:
некондиционность по летучим веществам (исправляют так же, как и для малых партий);
высокое максимальное давление пороховых газов Рм в канале ствола (устраняют увлажнением общей партии или подмешивают к общей партии несколько малых партий с повышенным содержанием летучих веществ и повышенной толщиной свода (тупые партии));
низкое значение Рmax устраняют сушкой пороха или добавляют партии с пониженной толщиной свода (острые партии));
некондиционные партии по вероятному отклонению начальной скорости снаряда rv (дополнительно перемешивают или порох вылеживается не менее 10 суток);
малая гравиметрическая плотность пороха не позволяет заряд поместить в гильзу (подмешиваются малые партии с большой гравиметрической плотностью).
В случае невозможности исправления качества пороха этими средствами партия расформировывается.
2.4.1.7 Особенности производства пироксилиновых порохов специального назначения
Графитовка пороха проводится путем напыления на поверхность пороховых элементов графита с целью устранения электризуемости порохов. Графитовке подвергаются мелкозерненые пороха. Операция проводится в полировальных барабанах. Пороха опыляются графитом, как правило, после вымочки. Содержание связанного графита составляет 0,2–0,3 %.
Флегматизацию порохов проводят после сушки и вымочки пороха. В качестве флегматизатора применяется камфора, которая с некоторым количеством дифениламина вводится в виде спиртового раствора. Для улучшения сыпучести и снижения электризуемости добавля-ется графит. Для флегматизации используется вращающийся барабан.
В готовом порохе содержание флегматизатора должно быть 1,0–1,8 %. Неравномерное проникновение камфоры в поверхностные слои пороха приводит к увеличению рассеивания снарядов при стрельбе. После флегматизации производятся сушка и разымка пороха. Флегматизации подвергаются лишь мелкозерненые пороха для стрелкового оружия.
Получение пористых порохов. На стадии смешения компонентов в смеситель загружаются калиевая селитра, предварительно просеянная через сито, и графит. После прессования и резки шнуров порох без провялки поступает на операцию вымочки, где происходит удаление калиевой селитры и летучего растворителя.