
- •Бийский технологический институт (филиал)
- •Содержание
- •Введение
- •1 Взрывчатые вещества
- •1.1 Общие сведения о взрывчатых веществах [3–6]
- •1.2 Классификация взрывчатых веществ [36]
- •1.3 Реакции взрывчатого разложения
- •1.4 Общие свойства взрывчатых веществ
- •1.4.1 Чувствительность взрывчатых веществ [4, 7]
- •1.4.2 Стойкость взрывчатых веществ [4, 7]
- •1.5 Действие взрыва на окружающую среду [4]
- •1.6 Понятие о боеприпасах и выстрелах [8]
- •1 − Взрыватель; 2 − заряд взрывчатого вещества; 3 − корпус;
- •4 − Ведущий поясок; 5 − сопло; 6 − твердотопливный реактивный заряд; 7 − боевая часть
- •1.7 Инициирующие взрывчатые вещества [9]
- •1.7.1 Гремучая ртуть
- •1.7.2 Азид свинца
- •1.7.3 Тринитрорезорцинат свинца
- •1.7.4 Тетразен
- •1.8 Средства инициирования
- •1.8.1 Средства воспламенения
- •1 − Колпачок; 2 − покрытие ударного состава; 3 − ударный состав
- •1 − Корпус гильзы; 2 – наковальня; 3 − капсюль-воспламенитель; 4 − затравочные отверстия
- •1.8.2 Средства детонирования
- •1 − Колпачок; 2 – чашечка; 3 – сетка шелковая; 4 – тнрс; 5 – азид свинца; 6 – тетрил; 7 – накольный состав
- •1.9 Бризантные взрывчатые вещества [3]
- •1.9.1 Нитроглицерин [3, 4, 10, 11]
- •1 − Инжектор для подачи водной эмульсии нитроглицерина на фазу
- •1.9.2 Гексоген [3,4]
- •1.9.3 Октоген [3,4]
- •1.9.4 Нитраты целлюлозы [4, 11–16]
- •5 Редуктор; 6 – вертикальный вал; 7 – кронштейн; 8крышка
- •1.9.5 Тротил [3, 4]
- •1.10 Промышленные взрывчатые вещества [4, 17–19]
- •1.10.1 Простейшие гранулированные взрывчатые вещества
- •1.10.2 Взрывчатые смеси аммиачной селитры с тротилом
- •1.10.3 Водосодержащие взрывчатые вещества
- •1.10.4 Эмульсионные взрывчатые вещества (эмулиты)
- •1.10.5 Нитроэфиросодержащие взрывчатые вещества
- •1.10.6 Предохранительные взрывчатые вещества
- •1.10.7 Конверсионные промышленные взрывчатые вещества
- •1.11 Снаряжение боеприпасов взрывчатыми веществами
- •1.12 Применение взрывчатых веществ в народном хозяйстве
- •2 Пороха и сртт
- •2.1 Общие сведения о порохах
- •2.2 Классификация порохов
- •2.3 Дымный порох [4, 11, 19, 38]
- •2.3.1 Свойства дымного пороха
- •2.3.2 Производство дымного пороха [11, 39]
- •2.3.3 Применение дымного пороха
- •2.4 Пироксилиновые пороха [4, 11, 40–42, 87–88]
- •2.4.1 Производство пироксилиновых порохов периодическим методом
- •2.4.2 Производство пироксилиновых порохов непрерывным методом
- •2.5 Особенности технологии производства сферических
- •2.6 Баллиститные пороха [4, 11, 44–46, 89]
- •2.6.1 Изготовление пороховых масс баллиститного типа
- •2.6.2 Переработка пороховых масс баллиститного типа методом проходного прессования
- •2.6.3 Иные способы переработки пороховых масс баллиститного типа
- •2.6.4 Применение баллиститных порохов в народном хозяйстве [18, 19]
- •1 − Буровая вышка; 2 − пиропатрон; 3 − узел воспламенения; 4 − пороховая шашка; 5 − воспламенительный заряд; 6 − нефтяной пласт; 7 − пороховой заряд; 8 − скважина с жидкостью (вода, растворы кислот)
- •1 − Прибор крепежный для измерения давления; 2 − наконечник;
- •3 − Кабель; 4 − головка кабельная; 5 − бронепокрытие; 6 − заглушка;
- •7 − Заряд воспламенительный; 8 − трубка алюминиевая; 9 − пиропатрон; 10 − заряд дополнительный; 11 − заряд многощелевой
- •1 − Газогенератор плазмы; 2 − заряд твердого плазменного топлива;
- •6 − Нагрузка; 7 − магнитная система
- •2.7 Смесевые ракетные твердые топлива
- •1 − Воспламенитель; 2 − обечайка камеры; 3 − заряд сртт;
- •4 − Сопловой блок
- •1 − Защитный кожух; 2 − блок центровочного зеркала; 3− заряд твердого топлива; 4 − теплоизоляционное покрытие; 5 − корпус; 6 − вкладыш; 7 − расширяющаяся часть сопла; 8 − резиновая заглушка;
- •9 − Воспламенительное устройство
- •1 − Теплоизоляция; 2 − заряд твердого топлива; 3 − сопловой блок; 4 − корпус; 5 − воспламенительное устройство
- •1 − Теплоизоляция; 2 − заряд твердого топлива; 3 − сопловой блок; 4 − корпус; 5 − воспламенительное устройство
- •1 − Корпус; 2 − теплозащитное покрытие; 3 − тороидальный воспламенитель; 4 − сопловой блок; 5 − графитовый вкладыш
- •1 − Двигательная установка; 2 − ракета «Союз»
- •1 − Глухой торец камеры сгорания; 2 − заряд тт; 3 − фильтр; 4 − сопло
- •2.7.1 Принципиальный состав сртт и назначение компонентов
- •1 − Окна; 2 − загрузочный люк; 3 − корпус; 4 − защитные мембраны; 5 − выгрузочный люк; 6 − резиновая прокладка; 7 − прижимной фланец
- •1 − Привод ротора; 2 − ротор; 3 − загрузочный люк; 4 − лаз с вышибной крышкой; 5 − загрузочное сопло; 6 − коллектор
- •1 − Корпус (сварная рамная конструкция); 2 – дверь для обслуживания привода; 3 – боковой люк; 4 – шарниры поводковой вилки;
- •1 − Термопара; 2 − вал; 3 − редуктор; 4 − люк; 5 − мешалки; 6 − корпус
- •1 − Автоцистерна с пластификатором; 2 − резервуар для хранения пластификатора; 3 − бункер для взвешивания; 4 − резервуар для
- •6 − Дополнительные жидкие ингредиенты; 7 − питатель твердых
- •13 − Дозирующий насос; 14 − вертикальный тигель со смесью;
- •15 − Передвижной бак с премиксом
- •1 − Предварительный смеситель; 2 − шнек предварительного
- •5 − Шнек вакуумного смесителя
- •1 − Вакуум-насос; 2 − емкость порошкообразных компонентов;
- •3 − Циклон; 4 − дозатор сыпучих компонентов; 5 − течка;
- •6 − Импульсный дозатор; 7 − реактор; 8 − фильтр; 9 − дозатор
- •1 − Контейнер окислителя; 2 − реактор жидковязких компонентов;
- •3 − Мерник связующего; 4 − емкость для алюминия; 5 − смеситель;
- •6 − Изложница; 7 − транспортная платформа
- •2.7.3 Методы контроля качества изделий
- •3 Пиротехнические составы
- •3.1 Общие сведения о пиротехнических составах [4, 85, 86, 90]
- •3.2 Классификация пиротехнических составов
- •3.2.1 Осветительные пиротехнические составы
- •3.2.2 Сигнальные пиротехнические составы
- •3.2.3 Трассирующие составы
- •3.2.4 Зажигательные составы
- •3.2.5 Дымовые (маскирующие) составы
- •3.2.6 Пестицидный состав [86–87]
- •3.3 Использование пиротехнических составов в народном
- •1 − Корпус; 2 − головная часть; 3 − шашка с йодистым серебром;
- •4 Вышибной заряд
- •1 − Головная дистанционная трубка; 2 − отверстия для выхода парогазовой смеси; 3 − шашка активного дыма; 4 − пиропороховой двигатель; 5 − сопловой блок; 6 − парашютный отсек
- •1 − Картонная гильза с шашкой; 2 − картонная оболочка;
- •3 − Льдообразующий состав; 4 − пороховой вышибной заряд;
- •5 − Капсюль-воспламенитель
- •1 − Корпус; 2 − пироэлементы; 3 − воспламенительно-разрывной заряд;
- •4 − Усилитель; 5 − замедлительно-воспламенительный узел; 6 − дроссель; 7 − вышибной заряд; 8 − электровоспламенитель
- •1 Корпус; 2 – крышка; 3 – упор; 4 – обтюратор; 5 – пироэлементы;
- •6 Искристо-форсовый состав; 7 – кометный факел; 8 – диафрагма;
- •Литература
1.9.1 Нитроглицерин [3, 4, 10, 11]
Нитроглицерин, или тринитрат глицерина (ТНГ), получают обработкой глицерина смесью азотной и серной кислот (47–50 % НNO3, 49–53 %H2SO4). Реакция получения ТНГ следующая:
C3H5(OH)3+ 3HNO3 C3H5(ONO2)3+ 3H2O
Этерификация протекает последовательно в три ступени: в первой получается мононитрат, во второй – динитрат и в третьей – тринитрат глицерина. Более 60 лет нитроглицерин получали по периодической схеме (метод Нобеля и метод Натана). При получении пери-одическими способами на фазах сепарации и очистки нитроглицерина от кислот скапливалось около 2–3 тонн нитроглицерина, что в случае аварии приводило к практически полному разрушению оборудования и производственных зданий.
В настоящее время в производстве применяются в основном непрерывные методы. При непрерывном методе в процессе находится меньшее количество ВВ, благодаря чему снижается опасность производства.
Нитрование глицерина происходит в нитраторе непрерывного действия в среде отработанной кислоты (рисунок 7).
1 – нитратор; 2, 4 − сепараторы; 3 − промывные колонны
Рисунок 7 − Технологическая схема непрерывного процесса производства нитроглицерина
После нитрации глицерина в нитраторе получается эмульсия нитроглицерина в отработанной кислоте, которую необходимо быстро отделить от отработанной кислоты. Разделение нитроглицерина и отработанных кислот основано на различии их плотностей и осущест-вляется на фазе сепарации. Возможны два способа сепарации:
1. Из концентрированных кислотных смесей, когда плотность нитроглицерина меньше плотности кислотной смеси. В этом случае нитроглицерин собирается в верхней части сепаратора и сливается через верхнюю переливную трубу за счет притока новой порции кислотной смеси. Данный способ получения нитроглицерина назван сепарационным.
2. Из разбавленной кислотной смеси. В этом случае плотность нитроглицерина оказывается больше, чем разбавленной кислотной смеси, и нитроглицерин собирается в нижней части аппарата. Этот метод получения нитроглицерина называется бессепарационным, хотя принципиально неверно, т.к. операция сепарации имеется.
Первый метод получения нитроглицерина более экономичен, т.к. отработанная кислота может быть снова использована в производстве, а второй метод является более безопасным, т.к. разбавленная отработанная кислота менее реакционноспособна.
После отделения от кислоты нитроглицерин поступает на стабилизацию для более глубокой очистки его от кислот и примесей (сульфо- и сульфонитроэфиров, неполных нитратов), которые снижают химическую стойкость основного продукта. Стабилизация заключается в проведении многократных водных и щелочных промывок.
Существует более современный метод получения нитроглицерина, который был разработан в Швеции, это инжекторный метод.
Особенностью этой технологической схемы (рисунок 8) является проведение нитрации глицерина в инжекторе при повышенной температуре (46–48 °С) под вакуумом и отделение нитроглицерина от отработанных кислот в центрифуге.
Свойства нитроглицерина. Химически чистый нитроглицерин – это маслообразная, бесцветная, прозрачная жидкость. Плотность 1600 кг/м3(1,6 г/см3). Затвердевая, может образовывать две формы: лабильную, с температурой затвердевания 2,1С, и стабильную, с температурой затвердевания 13,2 °С. Нитроглицерин частично растворим в воде: при 20 °С в одном литре воды растворяется 1,8 г нитроглицерина, а при 50 °С – 2,5 г.
Нитроглицерин хорошо растворяется во многих органических растворителях: ацетоне, диэтиловом эфире, метиловом спирте, бензоле, толуоле, ксилоле, нитробензоле и многих других. Нитроглицерин сам хорошо растворяет динитротолуол и тринитротолуол, что имеет большое значение для производства пластичных и желатинирован- ных ВВ. В нитроглицерине растворяется нитроцеллюлоза с содержанием азота около 12 % (коллоксилин). Это свойство используется при изготовлении бездымного нитроглицеринового пороха и желатин-ди-намитов.