
- •Минимум «остаточных знаний» по дисциплине «Газовая динамика»
- •0. Твердые тела, жидкости и газы
- •Притяжение
- •2. Обобщенное понятие жидкости
- •3. Гипотеза сплошной среды
- •4. Континуум
- •5. Постулат Даламбера – Эйлера
- •6. Критерий Кнудсена
- •7. Модели жидкости
- •8. Идеальная и вязкая жидкости
- •10. Уравнения состояния
- •11. Сжимаемость жидкости
- •12. Вязкость и внутреннее трение в жидкости. Закон трения Ньютона
- •13. Ламинарный и турбулентный пограничный слой
- •14. Толщина пограничного слоя
- •15. Отрыв пограничного слоя
- •16. Шероховатые и гидравлически гладкие поверхности
- •17. Базовые физические законы и основные уравнения газовой динамики
- •18. Общая постановка задачи в газовой динамике
- •19. Классификация задач газовой динамики
- •20. Методы упрощения задач в прикладной газовой динамике
- •21. Скорость звука
- •21. Распространение волн малых возмущений (звуковых волн) в дозвуковом, звуковом и сверхзвуковом потоках
- •22. Параметры торможения
- •24. Виды физического воздействия на поток
- •25. Геометрическое воздействие. Уравнение Гюгонио
- •26. Условие перехода от дозвукового течения
- •27. Уравнение обращения воздействия (уравнение Вулиса)
- •28. Максимальная скорость течения идеального газа
- •29. Критическая скорость, критическое сечение и критические параметры
- •31. Безразмерные скорости: относительная и приведенная скорости, число Маха
- •32. Газодинамические функции
- •33. Уравнение сохранения энергии для стационарного поточного процесса
- •34. Уравнение Бернулли
- •35. Уравнение энергии и уравнение Бернулли для адиабатного течения
- •36. Уравнение энергии и уравнение Бернулли для энергоизолированного течения
- •37. Уравнение энергии и уравнение Бернулли для изоэнтропийного течения
- •38. Уравнение энергии и уравнение Бернулли для энергоизолированного изоэнтропийного течения
12. Вязкость и внутреннее трение в жидкости. Закон трения Ньютона
Вязкостьюназывается свойство всех реальных жидкостей (капельных и газов) оказыватьсопротивление относительному сдвигу (деформации сдвига), т. е. изменению формы жидких частиц (но не их объёма).
Вязкость жидкости обусловлена взаимодействием молекул и проявляется только при движении жидкости, точнее, – при деформации жидкости (частиц жидкости). Если жидкость движется параллельными слоями (ламинарное течение), причем при этом происходит относительное скольжение соседних слоёв жидкости относительно друг друга (течение чистого сдвига), т.е. имеет место деформация чистого сдвига, токасательные напряжения между слоями могут быть описанызаконом трения Ньютона.
При течении чистого сдвига касательное напряжение – напряжение трения τ (сила трения, действующая на выделенную поверхность, отнесенная к величине этой поверхности), пропорционально поперечному градиенту скорости ∂w/∂y (скорости относительной деформации сдвига) и не зависит от абсолютной величины скорости, т.е. имеет значение лишь относительное движение слоёв жидкости. Этот факт был экспериментальным путем установлен Ньютоном и известен как закон о молекулярном трении в жидкости илизакон трения Ньютона: τ = μ·∂w/∂y , где коэффициент пропорциональности μ - называетсядинамическим коэффициентом вязкостиили простовязкостью. Жидкости, удовлетворяющие этому закону, называютньютоновскими жидкостями. Для неньютоновских жидкостей (смолы или мёда, например) напряжения трения определяются по более сложным формулам. Наука, изучающая движение неньютоновских жидкостей, называется реологией.
В общем случае вязкость (величина μ) зависит от природы жидкости, её агрегатного состояния, температуры и давления. Однако зависимость от давления в широком диапазоне изменения давления для большинства реальных газов и капельных жидкостей оказывается слабой и ей можно пренебречь. Чем большеμ, тем больше вязкость жидкости.
Трение в капельных жидкостях заключается, главным образом, в преодолении сил взаимодействия между молекулами слоёв, смещающихся относительно друг друга. С увеличением температуры капельной жидкости увеличивается частота колебаний молекул и силы взаимодействия между ними уменьшаются, а вместе с ними уменьшается и вязкость. Наоборот, в газах с увеличением температуры вязкость возрастает, поскольку трение в газах обусловлено переносом направленного количества движения молекул при их тепловом хаотическом движении: с ростом температуры газа скорость хаотического движения молекул и число соударений возрастают, а вместе с этим увеличиваются перенос количества движения и вязкость газа.
Необходимо отметить, что рассмотренные выше слоистая модель течения и выведенный на её основе закон трения описывают весьма простой частный случай движения жидкости. Обобщением закона трения Ньютона на общий случай произвольного пространственного движения вязкой жидкостиявляется закон трения Стокса, согласно которомунапряжения, вызванные вязкостью, пропорциональны соответствующим скоростям деформации (тензор вязких напряжений пропорционален тензору скоростей деформаций).
При турбулентных режимах течения коэффициент трения приобретает совершенно иное содержание в соответствии с другим, значительно более сложным механизмом внутреннего трения, обусловленным наличием турбулентных пульсаций!!!