А.Н.Шерстнев - Математический анализ
..pdfx137. nEKOTORYE SPECIALXNYE FUNKCII
pRIMENIM POLU^ENNYE REZULXTATY K ANALIZU WAVNYH W PRILOVENIQH SPECIALXNYH FUNKCIJ, ZADANNYH INTEGRALAMI.
1. b\TA-FUNKCIQ |JLERA ZADA•ETSQ INTEGRALOM
B(a; b) = Z 1 xa,1(1 , x)b,1 dx (a; b > 0):
0
w UKAZANNOJ OBLASTI INTEGRAL SHODITSQ. iNTEGRAL QWLQETSQ SOBSTWENNYM W OBLASTI f(a; b)j a 1; b 1g. s POMO]X@ FORMULY nX@TONA-lEJBNICA INTEGRAL MOVET BYTX WY^ISLEN LI[X PRI NEKOTORYH a; b. pO\TOMU FUNK- CI@ B(a; b) PRIHODITSQ IZU^ATX KAK INTEGRAL (WOOB]E, NESOBSTWENNYJ), ZAWISQ]IJ OT PARAMETRA. pOKAVEM SNA^ALA, ^TO B(a; b) NEPRERYWNA.
pREDSTAWIM B(a; b) W WIDE B(a; b) = B0 (a; b) + B1(a; b), GDE
1=2  | 
	
  | 
	1  | 
	
  | 
B0(a; b) = Z0  | 
	xa,1  | 
	(1 , x)b,1 dx; B1 (a; b) = Z1=2xa,1(1  | 
	, x)b,1 dx:  | 
kAVDYJ IZ INTEGRALOW B0; B1 IMEET OSOBENNOSTX NE BOLEE ^EM W ODNOJ TO^KE I DOSTATO^NO USTANOWITX NEPRERYWNOSTX KAVDOGO IZ NIH. uTWERV- DENIE 136.1 NEPOSREDSTWENNO NE PRIMENIMO, TAK KAK MNOVESTWO PARAMET- ROW OTKRYTO W R2. pOSKOLXKU NEPRERYWNOSTX FUNKCII W TO^KE ESTX SWOJ- STWO LOKALXNOE, MOVNO USTRANITX \TO ZATRUDNENIE. pUSTX a0; b0 > 0 PRO- IZWOLXNY. pOGRUZIM TO^KU (a0; b0 ) W NEKOTORYJ ZAMKNUTYJ PRQMOUGOLX-
NIK = [a1; a2] [b1; b2] TAK, ^TOBY 0 < a1 < a0 < a2; 0 < b1 < b0 < b2. pOKAVEM, NAPRIMER, ^TO FUNKCIQ B0(a; b) NEPRERYWNA W TO^KE (a0; b0 ).
w SILU 136.1 DOSTATO^NO USTANOWITX, ^TO INTEGRAL  | 
	Z01=2xa,1(1 , x)b,1 dx  | 
||||||||||||||
SHODITSQ RAWNOMERNO W . pOLAGAQ c =  | 
	
  | 
	
  | 
	max  | 
	
  | 
	
  | 
	
  | 
	(1  | 
	,  | 
	x)b,1 , IMEEM  | 
||||||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	(x;b)  | 
	2  | 
	[0;1=2]  | 
	
  | 
	[b1;b2]  | 
	
  | 
	
  | 
||||
  | 
	, x)b,1  | 
	
  | 
	
  | 
	
  | 
	
  | 
	2  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||
xa,1(1  | 
	cxa1,1 (0 < x < 1=2; (a; b)  | 
	). pO PRIZNAKU wEJER-  | 
|||||||||||||
[TRASSA OTS@DA SLEDUET RAWNOMERNAQ SHODIMOSTX.  | 
	
  | 
	
  | 
	>  | 
	
  | 
	
  | 
	
  | 
|||||||||
  | 
	
  | 
	
  | 
	
  | 
||||||||||||
wY^ISLIM  | 
	@B(a; b). fORMALXNO DIFFERENCIRUQ POD ZNAKOM INTEGRA-  | 
||||||||||||||
LA, IMEEM  | 
	@a  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||
  | 
	@B(a; b)  | 
	= Z0  | 
	1  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|
(1)  | 
	
  | 
	@a  | 
	xa,1 (1 , x)b,1 lnx dx  | 
	
  | 
	(a; b > 0):  | 
	
  | 
|||||||||
pOKAVEM, ^TO DIFFERENCIROWANIE ZAKONNO. dOSTATO^NO UBEDITXSQ (136.2), ^TO INTEGRAL (1) SHODITSQ RAWNOMERNO NA L@BOM OTREZKE [a1; a2]; a1 > 0:
221
pEREHODQ K INTEGRALAM S ODNOJ OSOBENNOSTX@, DOKAVEM, NAPRIMER, ^TO NA
OTREZKE [a1; a2 ] RAWNOMERNO SHODITSQ INTEGRAL Z01=2xa,1(1 , x)b,1 ln x dx.  | 
||||||||
pREOBRAZUQ PODYNTEGRALXNU@ FUNKCI@ K WIDU xa,1,"(1  | 
	, x)b,1x" ln x  | 
|||||||
  | 
	
  | 
	
  | 
	1  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
(0  | 
	< x 2), GDE " > 0 TAKOE, ^TO a1 , " > 0, ZAMETIM,  | 
	^TO FUNKCIQ  | 
||||||
  | 
	"  | 
	
  | 
	1  | 
	
  | 
	
  | 
	
  | 
||
jx  | 
	
  | 
	ln xj OGRANI^ENA NA (0; 2], TO ESTX  | 
	
  | 
	
  | 
||||
  | 
	
  | 
	
  | 
	
  | 
	jxa,1(1 , x)b,1 lnxj Mxa1,1,"  | 
	1  | 
	
  | 
||
  | 
	
  | 
	
  | 
	
  | 
	(x 2 (0; 2 ]);  | 
	
  | 
|||
GDE M | PODHODQ]AQ KONSTANTA. tEPERX MOVNO WOSPOLXZOWATXSQ PRIZNA-
KOM 135.3.
2. gAMMA-FUNKCIQ |JLERA ZADA•ETSQ INTEGRALOM
,(a) = Z +1 xa,1e,x dx; a > 0:
0
iNTEGRAL IMEET OSOBENNOSTI W +1 I (PRI a < 1) W TO^KE 0. pRI WSEH a > 0 INTEGRAL SHODITSQ. pOKAVEM, ^TO NA L@BOM OTREZKE [a1; a2] (0 < a1 < a2 < +1) INTEGRAL SHODITSQ RAWNOMERNO. oTS@DA, W ^ASTNOSTI, SLEDUET NEPRERYWNOSTX FUNKCII ,(a).
pREDSTAWIM ,(a) W WIDE ,(a) =  | 
	Z  | 
	
  | 
	1  | 
	Z  | 
	
  | 
	+1  | 
	xa,1e,x dx. iZ  | 
0  | 
	xa,1e,x dx +  | 
	1  | 
	
  | 
||||
OCENOK  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
xa,1e,x xa1,1 (0 < x 1); xa,1e,x xa2,1e,x (x 1)
I PRIZNAKA wEJER[TRASSA SLEDUET RAWNOMERNAQ SHODIMOSTX INTEGRALA NA
[a1; a2]: >
iZ 136.2 I PRIZNAKA wEJER[TRASSA SLEDUET, ^TO FUNKCIQ ,(a) DIFFE- RENCIRUEMA L@BOE ^ISLO RAZ W OBLASTI a > 0:
  | 
	,(k) (a) = Z0+1xa,1 (lnx)ke,x dx; k = 1; 2; : : : :  | 
  | 
	3. z A M E ^ A N I E. iMEET MESTO FORMULA  | 
(2)  | 
	,(a) = (a , 1),(a , 1); a > 1:  | 
w ^ASTNOSTI, ESLI n 2 N, TO
,(n + 1) = n,(n) = n(n , 1),(n , 1) = : : : = n!,(1) = n!:
222
tAKIM OBRAZOM, GAMMA-FUNKCIQ QWLQETSQ ESTESTWENNYM OBOB]ENIEM FAK- TORIALA NA NECELYE ARGUMENTY. ffORMULA (2) SLEDUET IZ WYKLADKI (DLQ a > 1 INTEGRAL ,(a) IMEET EDINSTWENNU@ OSOBENNOSTX W +1):
,(a) =  | 
	+1  | 
	
  | 
	a  | 
	1  | 
	e,  | 
	x  | 
	dx =  | 
	lim  | 
	
  | 
	Z  | 
	N  | 
	a 1  | 
	e,  | 
	x  | 
	dx  | 
|||
  | 
	x  | 
	
  | 
	,  | 
	
  | 
	
  | 
	
  | 
	
  | 
	x  | 
	,  | 
	
  | 
||||||||
  | 
	0  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	N!+1  | 
	0  | 
	
  | 
	N xa,2e,xdx]  | 
|||||
=  | 
	Z lim  | 
	
  | 
	[  | 
	,  | 
	xa,1e,x N  | 
	+ (a  | 
	
  | 
	1)  | 
	
  | 
|||||||||
  | 
	N!+1  | 
	
  | 
	
  | 
	
  | 
	
  | 
	j0  | 
	
  | 
	,  | 
	Z0  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||||
=  | 
	(a ,  | 
	1),(a ,  | 
	1):g  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||||||
4. u P R A V N E N I E. pOKAZATX, ^TO INTEGRALY
Z 1xa,1(1 , x)b,1 dx; Z 1xa,1(1 , x)b,1 lnx dx (a; b > 0);
0 0
Z 1xa,1e,x dx; Z +1xa,1e,x dx (a > 0)
0 1
NE SHODQTSQ RAWNOMERNO W UKAZANNYH OBLASTQH.
223
posledowatelxnosti i rqdy funkcij
x138. rAWNOMERNAQ SHODIMOSTX POSLEDOWATELXNOSTI FUNKCIJ
1. pUSTX | MNOVESTWO. pOSLEDOWATELXNOSTX FUNKCIJ fn : ! C NAZYWAETSQ SHODQ]EJSQ K FUNKCII f : ! C W KAVDOJ TO^KE MNOVESTWA(PI[EM fn ! f), ESLI ^ISLOWAQ POSLEDOWATELXNOSTX fn (!) SHODITSQ K f (!) PRI KAVDOM ! 2 :
(1) 8! 2 8" > 0 9N 8n > N (jfn (!) , f (!)j < ")
(ZDESX NATURALXNOE N , KONE^NO, ZAWISIT OT ! 2 ).
bOLX[EE ZNA^ENIE PRI IZU^ENII FUNKCIONALXNYH POSLEDOWATELXNOS- TEJ IGRAET INOJ, BOLEE SILXNYJ WID SHODIMOSTI.
  | 
	2. pOSLEDOWATELXNOSTX fn : ! C NAZYWAETSQ RAWNOMERNO SHODQ]EJSQ  | 
K FUNKCII f : ! C (BUDEM PISATX fn =) f ), ESLI  | 
|
(2)  | 
	8" > 0 9N 8n > N 8! 2 (jfn(!) , f(!)j < "):  | 
(w \TOM OPREDELENII ^ISLO N UVE NE ZAWISIT OT !!)  | 
|
3. z A M E ^ A N I E. eSLI fn =) f, TO fn ! f . oBRATNOE, WOOB]E, NEWERNO fDLQ POSLEDOWATELXNOSTI FUNKCIJ fn (t) (0 t 1), ZADANNYH RAWENSTWAMI fn (t) = 0 (t 6= 1=n); fn (1=n) = 1, IMEEM: fn ! 0, NO fn NE SHODITSQ K 0 RAWNOMERNOg.
4. dLQ OGRANI^ENNOJ FUNKCII f : ! C POLOVIM
kfk sup jf(!)j:
!2
wWED•ENNAQ WELI^INA NAZYWAETSQ RAWNOMERNOJ NORMOJ OGRANI^ENNOJ FUNK- CII. oNA OBLADAET WSEMI SWOJSTWAMI NORMY:
kfk = 0 ) f = 0; k fk = j jkfk ( 2 C ), kf + gk kfk + kgk .
w TERMINAH \TOJ NORMY UDOBNO SFORMULIROWATX USLOWIQ RAWNOMERNOJ SHODIMOSTI.
224
5. pUSTX fn : ! C (n = 1; 2; : : :) | POSLEDOWATELXNOSTX FUNKCIJ.  | 
||
sLEDU@]IE USLOWIQ \KWIWALENTNY:  | 
||
(A) fn SHODITSQ RAWNOMERNO (K f),  | 
||
(B)  | 
	kfn , fk ! 0 (n ! 1),  | 
|
(W)  | 
	8" > 0  | 
	9N 8n; m > N (kfn , fmk < "),  | 
(G)  | 
	8" > 0  | 
	9N 8n; m > N 8! 2 (jfn (!) , fm (!)j < ").  | 
(A) ) (B). dOSTATO^NO ZAMETITX, ^TO IZ (2) SLEDUET, ^TO kfn , fk < "  | 
||
PRI n > N. uMESTNO OBRATITX WNIMANIE ^ITATELQ, ^TO W USLOWII (A)  | 
||
NE TREBUETSQ OGRANI^ENNOSTI FUNKCIJ. tEM NE MENEE, PRI DOSTATO^NO
BOLX[IH n RAZNOSTX fn , f UVE OBQZANA BYTX OGRANI^ENNOJ FUNKCIEJ.  | 
|||||||
(B) ) (W). pUSTX N 2 N TAKOWO, ^TO kfn ,fk < "=2 PRI n > N . tOGDA  | 
|||||||
  | 
	kfn , fmk kfn , fk + kfm , fk < " (n; m > N):  | 
	
  | 
	
  | 
||||
(W) )  | 
	(G) (!!).  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
(G) )  | 
	(A). uSLOWIE (G) OZNA^AET, ^TO PRI KAVDOM ! 2 ^ISLOWAQ  | 
||||||
POSLEDOWATELXNOSTX fn (!) FUNDAMENTALXNA, A ZNA^IT, SU]ESTWUET f (!)  | 
|||||||
n  | 
	
  | 
	j  | 
	
  | 
	,  | 
	j  | 
	2  | 
	
  | 
lim fn (!). pUSTX N TAKOWO, ^TO  | 
	
  | 
	fn (!)  | 
	
  | 
	fm(!) < " (n; m > N; !  | 
	
  | 
	).  | 
|
pEREHODQ W \TOM NERAWENSTWE K PREDELU PO m, IMEEM jfn (!) , f(!)j
" (n > N; ! 2 ): >
x139. rAWNOMERNAQ SHODIMOSTX I NEPRERYWNOSTX
pRODEMONSTRIRUEM, KAK RABOTAET PONQTIE RAWNOMERNOJ SHODIMOSTI POSLEDOWATELXNOSTI FUNKCIJ, ZADANNYH NA TOPOLOGI^ESKOM PROSTRANST- WE.
1. pUSTX E | TOPOLOGI^ESKOE PROSTRANSTWO, FUNKCII fn : E ! C
(n = 1; 2; : : :) NEPRERYWNY W TO^KE !0 2 E I fn =) f. tOGDA f TAKVE NEPRERYWNA W TO^KE !0.
pUSTX " > 0 PROIZWOLXNO I N 2 N TAKOWO, ^TO jfN (!),f (!)j < "=3 (! 2 E). tAK KAK fN NEPRERYWNA W !0 , NAJDETSQ• OKRESTNOSTX U TO^KI !0 TAKAQ, ^TO jfN (!) , fN (!0)j < "=3(! 2 U). sLEDOWATELXNO, DLQ L@BOJ TO^KI
! 2 U:
jf (!) , f (!0 )j jf(!) , fN (!)j + jfN (!) , fN (!0)j
+ jfN (!0 ) , f (!0)j < ": >
225
2.s L E D S T W I E. pUSTX fn : E ! C | POSLEDOWATELXNOSTX FUNKCIJ, NEPRERYWNYH NA TOPOLOGI^ESKOM PROSTRANSTWE E, I fn =) f. tOGDA f NEPRERYWNA NA E.
3.p R I M E R. rASSMOTRIM POSLEDOWATELXNOSTX ^ISLOWYH FUNKCIJ
fn(t) = (1  | 
	, nt) [0;1=n] (t) (0 t  | 
	1).  | 
	o^EWIDNO  | 
	fn  | 
	NEPRERYWNY  | 
	,  | 
	PRI^EM  | 
|
  | 
	
  | 
	
  | 
	•  | 
|||||
DLQ L@BOJ TO^KI t 2 [0; 1] SU]ESTWUET PREDEL  | 
	
  | 
	
  | 
	
  | 
	
  | 
||||
  | 
	f (t) = limfn (t) =  | 
	0;  | 
	ESLI 0 < t  | 
	1,  | 
	
  | 
	
  | 
||
  | 
	n  | 
	1;  | 
	ESLI t = 0.  | 
	
  | 
	
  | 
|||
oDNAKO, \TA PREDELXNAQ FUNKCIQ UVE NE NEPRERYWNA.
x140. rAWNOMERNAQ SHODIMOSTX RQDOW FUNKCIJ
1. pUSTX uj : ! C | POSLEDOWATELXNOSTX ^ISLOWYH FUNKCIJ, ZADAN- NYH NA ABSTRAKTNOM MNOVESTWE , TAK ^TO KAVDOJ TO^KE ! 2 MOVNO SOPOSTAWITX ^ISLOWOJ RQD
1
( ) X uj (!):
j=1
rQD ( ) NAZYWAETSQ RAWNOMERNO SHODQ]IMSQ, ESLI RAWNOMERNO SHODITSQ
n
POSLEDOWATELXNOSTX P uj (!) EGO ^ASTNYH SUMM.
j=1
oTMETIM NEPOSREDSTWENNOE SLEDSTWIE 139.1.
2.pUSTX | TOPOLOGI^ESKOE PROSTRANSTWO, I FUNKCII uj : ! C (j = 1; 2; : : :) NEPRERYWNY W TO^KE !0. pUSTX RQD ( ) SHODITSQ RAWNOMER- NO K FUNKCII v : ! C . tOGDA v NEPRERYWNA W TO^KE !0. eSLI, KROME TOGO, WSE uj NEPRERYWNY NA , TO I SUMMA RQDA v NEPRERYWNA NA .
3.[kRITERIJ kO[I]. rQD ( ) SHODITSQ RAWNOMERNO TTOGDA
  | 
	8" > 0 9N 8n > N 8p 8! 2 0  | 
	
  | 
	n+p  | 
	uj(!)  | 
	< "1 :  | 
  | 
	@  | 
	
  | 
	X  | 
	
  | 
	A  | 
  | 
	
  | 
	j=n+1  | 
	
  | 
	
  | 
|
n  | 
	4. [pRIZNAK wEJER[TRASSA]. pUSTX j  | 
	> 0;  | 
	juj (!)j j (! 2 ) I  | 
||
j=1  | 
	j < +1. tOGDA RQD ( ) SHODITSQ RAWNOMERNO.  | 
	
  | 
|||
P  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
226
p. 3 QWLQETSQ PEREFORMULIROWKOJ DLQ RQDOW KRITERIQ 138.5(G), P. 4 SLEDUET IZ P. 3 (!!). >
5. u P R A V N E N I E. iSSLEDOWATX NA RAWNOMERNU@ SHODIMOSTX RQD
1 2 ,nx
P x e (0 x < +1). f pRIMENITE P. 4.g
n=1
x141. pRIZNAKI SHODIMOSTI dIRIHLE I aBELQ
sLEDU@]IE NIVE PRIZNAKI PRIGODNY DLQ NEABSOL@TNO SHODQ]IHSQ RQDOW WE]ESTWENNYH FUNKCIJ. rASSMOTRIM RQD WIDA
  | 
	
  | 
	X  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
(1)  | 
	
  | 
	1 uj(!)vj (!);  | 
	
  | 
	
  | 
	
  | 
	
  | 
||
  | 
	
  | 
	j=1  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
GDE uj ; vj : ! R | WE]ESTWENNYE FUNKCII.  | 
	
  | 
	
  | 
	
  | 
	
  | 
||||
pRIZNAK dIRIHLE  | 
	].  | 
	pUSTX  | 
	u1(!) u2  | 
	(!n)  | 
	: : : (! 2  | 
	),  | 
	PRI^EM  | 
|
1. [  | 
	
  | 
	
  | 
	•  | 
|||||
uk =) 0, I SU]ESTWUET M > 0  | 
	TAKOE, ^TO j j=1 vj (!)j M  | 
	(! 2 ; n 2  | 
||||||
N). tOGDA RQD (1) SHODITSQ RAWNOMERNO.  | 
	P  | 
	
  | 
	
  | 
	
  | 
||||
2. [pRIZNAK aBELQ]. pUSTX u1(!) u2(!) : : : (! 2 ), PRI^•EM SU]ESTWUET M > 0 TAKOE, ^TO juj (!)j M (j = 1; 2; : : :). pUSTX, KROME
TOGO, RQD 1 v (!) SHODITSQ RAWNOMERNO. tOGDA RQD (1) TAKVE SHODITSQ
jP=1 j
RAWNOMERNO.
p. 1. DLQ FIKSIROWANNOGO n 2 N POLOVIM
wk = vn+1 + : : : + vn+k (k = 1; 2; : : :):
iMEET MESTO TOVDESTWO
p  | 
	
  | 
	p,1  | 
	
  | 
|
X  | 
	un+kvn+k =  | 
	X  | 
	(un+k , un+k+1 )wk + un+pwp:  | 
|
k=1  | 
	k=1  | 
|||
  | 
	
  | 
sLEDOWATELXNO,
  | 
	p  | 
	
  | 
(2)  | 
	P  | 
	un+k (!)vn+k (!)  | 
  | 
	
  | 
|
  | 
	k=1  | 
	
  | 
p,1
kP=1 jun+k (!) , un+k+1(!)jjwk(!)j
+ jun+p (!)wp (!)j:
227
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	n+k  | 
	
  | 
	
  | 
	n  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||
pO USLOWI@  | 
	jwk  | 
	(!)j = j j=1 vj (!), j=1 vj (!)j 2M.  | 
	s U^ETOM MONOTONNOS  | 
	-  | 
|||||||||||||||||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	•  | 
	
  | 
	
  | 
	
  | 
||||||||||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	P  | 
	
  | 
	
  | 
	
  | 
	P  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|
TI POSLEDOWATELXNOSTI uj  | 
	(!) IMEEM  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||||||||||||
  | 
	p  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
j k=1 un+k (!)vn+k(!)j 2M(un+1 (!) , un+2(!) + un+2 (!) , un+3(!)  | 
	
  | 
	
  | 
	
  | 
||||||||||||||||||
P  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	+ : : : , un+p(!) + un+p (!)) = 2Mun+1(!) (! 2 ):  | 
||||||||||||||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||||||||||||
tAK KAK uk =)  | 
	0, SOGLASNO 140.3 POLU^AEM TREBUEMOE.  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||||||||||||||
  | 
	p. 2. w UKAZANNYH WY[E OBOZNA^ENIQH DLQ L@BOGO " > 0 SU]ESTWUET  | 
||||||||||||||||||||
N = N (") TAKOE, ^TO PRI n > N DLQ WSEH ! 2  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||||||||||||||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	jwk(!)j = jvn+1(!) + : : : + vn+k(!)j < " (k = 1; 2; : : :):  | 
	
  | 
	
  | 
	
  | 
|||||||||||||
\TO SLEDUET IZ  | 
	140.3,  | 
	PRIMENENNOGO K RQDU  | 
	1  | 
	(!)).  | 
	sLEDOWATELXNO  | 
	,  | 
	S  | 
||||||||||||||
(  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	•  | 
	
  | 
	
  | 
	j=1 vj  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||
U^ETOM  | 
	
  | 
	
  | 
	I MONOTONNOSTI  | 
	fuj (!)g:  | 
	P  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||||||||||
•  | 
	
  | 
	
  | 
	(2)  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||||||
  | 
	
  | 
	
  | 
	p  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
  | 
	
  | 
	k=1  | 
	un+k(!)vn+k (!) "(un+1(!) , un+p (!)) + "jun+p(!)j 3"M:  | 
	
  | 
	
  | 
	
  | 
|||||||||||||||
  | 
	
  | 
	X  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||||
sNOWA W SILU 140.3 POLU^AEM TREBUEMOE. >  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||||||||||||||
  | 
	3. p R I M E R. iSSLEDUEM NA RAWNOMERNU@ SHODIMOSTX RQD  | 
	
  | 
	
  | 
	
  | 
|||||||||||||||||
(3)  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	1 sinnx ( > 0):  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	n=1  | 
	n  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	X  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|
w SLU^AE > 1 RQD SHODITSQ ABSOL@TNO I RAWNOMERNO (SM. 140.4). w SLU-  | 
|||||||||||||||||||||
^AE  | 
	
  | 
	1 PRIMENIM PRIZNAK dIRIHLE, POLAGAQ vn (x) = sin nx; un(x) =  | 
|||||||||||||||||||
n,  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	n  | 
	
  | 
	
  | 
	
  | 
||
  | 
	
  | 
	
  | 
	oSTAETSQ ISSLEDOWATX NA OGRANI^ENNOSTX SUMMY  | 
	j j=1 vj (x)j =  | 
|||||||||||||||||
  | 
	(=) 0).  | 
	
  | 
	•  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||||||||
j sin x + sin 2x + : : : + sin nxj. s  | 
	U^•ETOM  | 
	TOVDESTWA  | 
	
  | 
	P  | 
	
  | 
	=  | 
|||||||||||||||
2 sin sin  | 
	
  | 
||||||||||||||||||||
cos( , ) , cos( + ) IMEEM  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||||||||||
sinx + sin 2x + : : : + sin nx
=(2 sin x2 ),1 [2 sin x2 sinx + : : : + 2 sin x2 sin nx]
=(2 sin x2 ),1 [cos x2 , cos 32x + cos 32x , : : : , cos(n + 12 )x] x2 ),1 [cos x2 , cos(n + 12)x]; x 6= 2 k (k 2 Z).
228
pUSTX " > 0 PROIZWOLXNO MALO. tOGDA NA OTREZKE ["; 2  | 
	,  | 
	"] MY IMEEM  | 
|||||||||||||||||||||||
n  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	"  | 
	
  | 
	
  | 
	1  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||||
j j=1  | 
	vj (x)  | 
	
  | 
	(sin 2),  | 
	
  | 
	
  | 
	(n = 1; 2; : : :).  | 
	tAKIM OBRAZOM  | 
	,  | 
	RQD  | 
	(3)  | 
	PRI  | 
	
  | 
	
  | 
	1  | 
|||||||||||
  | 
	j  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||
P  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
SHODITSQ RAWNOMERNO NA L@BOM OTREZKE WIDA ["; 2 , "]; " > 0:  | 
	
  | 
	
  | 
	
  | 
||||||||||||||||||||||
u P R A V N E N I Q. iSSLEDOWATX NA RAWNOMERNU@ SHODIMOSTX  | 
	
  | 
	
  | 
	
  | 
||||||||||||||||||||||
4.  | 
	1  | 
	
  | 
	n  | 
	
  | 
	1  | 
	
  | 
	
  | 
	
  | 
	(0  | 
	
  | 
	x < + ),  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||||
  | 
	( 1)  | 
	x  | 
	+ n  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||||||||||||
  | 
	
  | 
	n=1  | 
	,  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	1  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||
  | 
	
  | 
	P  | 
	
  | 
	
  | 
	1  | 
	
  | 
	
  | 
	
  | 
	
  | 
	x  | 
	n  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|
5.  | 
	1  | 
	
  | 
	n  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	(0 < x < 1).  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||||
  | 
	( 1)  | 
	n  | 
	1 + xn  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||||||||||||
  | 
	
  | 
	n=1  | 
	,  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||
  | 
	
  | 
	P  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
6. pOKAZATX, ^TO RQD (3) NA OTREZKE [0; 2 ] SHODITSQ NERAWNOMERNO PRI
0 < 1.
x142. oPERACII NAD RAWNOMERNO SHODQ]IMISQ RQDAMI  | 
|||||
1. pUSTX ( Rn ) J-IZMERIMO I ZAMKNUTO, fn : ! R NEPRERYWNY I  | 
|||||
)  | 
	n  | 
	Z  | 
	
  | 
	Z  | 
	
  | 
fn = f. tOGDA  | 
	lim  | 
	
  | 
	fn(x) dx =  | 
	
  | 
	f(x)dx.  | 
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
w SILU 139.2 FUNKCIQ f NEPRERYWNA I, W ^ASTNOSTI, INTEGRIRUEMA NA  | 
|||||
. sOGLASNO 138.5 kfn , fk ! 0 (n ! +1). pO\TOMU  | 
|||||
  | 
	Z  | 
	fn (x) dx , Z  | 
	f (x) dx Z jfn(x) , f (x)j dx  | 
||
  | 
	
  | 
	
  | 
|||
  | 
	
  | 
	
  | 
	kfn , fk m( ) ! 0 (n ! +1):  | 
	
  | 
	>  | 
  | 
	
  | 
	
  | 
|||
  | 
	
  | 
	
  | 
|||
w KA^ESTWE SLEDSTWIQ PRIWEDEM• TEOREMU O PO^LENNOM INTEGRIROWANII RAWNOMERNO SHODQ]EGOSQ RQDA.
2. pUSTX ( Rn) J-IZMERIMO I ZAMKNUTO, un : ! R NEPRERYWNY, I RQD un (x) SHODITSQ RAWNOMERNO NA . tOGDA
  | 
	
  | 
	X  | 
	X  | 
	
  | 
	
  | 
Z  | 
	(  | 
	1 un(x)) dx =  | 
	1  | 
	
  | 
	un(x) dx:  | 
  | 
	n=1  | 
	n=1 Z  | 
	
  | 
||
pOLEZNO WYDELITX SLU^AJ, KOGDA FUNKCII ZADANY NA OTREZKE ^ISLOWOJ PRQMOJ.
229
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	1  | 
  | 
	3. pUSTX un(t) (a t b) NEPRERYWNY I RQD n=1 un(t) SHODITSQ RAW-  | 
|||||||
NOMERNO NA [a; b]. tOGDA  | 
	
  | 
	
  | 
	P  | 
|||||
  | 
	Z  | 
	x  | 
	
  | 
	1  | 
	
  | 
	1  | 
	
  | 
	x  | 
(1)  | 
	a  | 
	(  | 
	X  | 
	un (t))dt =  | 
	X Z  | 
	a  | 
	un(t)dt (a x b);  | 
|
  | 
	
  | 
	
  | 
	n=1  | 
	
  | 
	n=1  | 
	
  | 
	
  | 
|
PRI^•EM RQD W PRAWOJ ^ASTI SHODITSQ RAWNOMERNO.
w SILU P. 2 W DOKAZATELXSTWE NUVDAETSQ LI[X RAWNOMERNAQ SHODIMOSTX RQDA W PRAWOJ ^ASTI (1). tREBUEMOE SLEDUET IZ OCENKI
  | 
	n+p  | 
	x  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	x n+p  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	n+p  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||||||
  | 
	X  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	X  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	X  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||||
  | 
	jk=n+1 Za  | 
	uk(t) dtj Za  | 
	jk=n+1 uk (t)jdt (b , a)k k=n+1 ukk[a;b]:  | 
	
  | 
	>  | 
|||||||||||||||||||||||||||||
  | 
	pUSTX  | 
	uj : [a; b] !  | 
	R  | 
	
  | 
	
  | 
	GLADKIE FUNKCII  | 
	
  | 
	PRI^EM  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||||||||||||||||
4.  | 
	
  | 
	
  | 
	
  | 
	|  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	,  | 
	
  | 
	
  | 
	
  | 
	
  | 
	•  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||||||||
A  | 
	PRI NEKOTOROM  | 
	c (a c  | 
	b)  | 
	SHODITSQ ^ISLOWOJ RQD  | 
	
  | 
	
  | 
	1  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||||||||||||||||||||
( )  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	j=1 uj (c),  | 
|||||||||||||||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	P  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|
(B)  | 
	RQD 1 u0 (x) SHODITSQ RAWNOMERNO NA  | 
	[a; b].  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||||||||||||||||||
  | 
	P  | 
	
  | 
	j  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
  | 
	j=1  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|
tOGDA RQD 1  | 
	uj(x)  | 
	SHODITSQ RAWNOMERNO NA  | 
	[a; b]  | 
	I  | 
	(  | 
	1  | 
	
  | 
	
  | 
	
  | 
	
  | 
	0  | 
	
  | 
	1  | 
	u0 (x).  | 
||||||||||||||||||||
  | 
	P  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	P  | 
	uj (x)) =  | 
	
  | 
	P  | 
||||||||||||||||||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	j  | 
|||||||
  | 
	j=1  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	j=1  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	j=1  | 
|||||||
pOLOVIM  | 
	
  | 
	X  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	,  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	2  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||||||
  | 
	'(x) = 1  | 
	
  | 
	u0  | 
	(x) (a  | 
	x  | 
	b); vj(x) = uj (x)  | 
	uj(c) (j  | 
	N):  | 
	
  | 
|||||||||||||||||||||||||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	j  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|
  | 
	
  | 
	
  | 
	j=1  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||
sOGLASNO P. 3  | 
	Z  | 
	
  | 
	x  | 
	'(t)dt =  | 
	
  | 
	1  | 
	(  | 
	
  | 
	xu0 (t) dt) =  | 
	1 vj(x), I RQD  | 
	
  | 
	1  | 
	vj (x) SHO-  | 
|||||||||||||||||||||
  | 
	
  | 
	
  | 
	c  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	P  | 
	Z  | 
	c  | 
	
  | 
	j  | 
	P  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	P  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	j=1  | 
	
  | 
	
  | 
	
  | 
	j=1  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	j=1  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||||
DITSQ RAWNOMERNO.  | 
	pO\TOMU  | 
	
  | 
	RAWNOMERNO  | 
	SHODITSQ  | 
	
  | 
	RQD  | 
	
  | 
	1  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||||||||||||||||||||
  | 
	
  | 
	
  | 
	j=1 uj (x) =  | 
|||||||||||||||||||||||||||||||
1 [vj (x) + uj (c)]. pRI \TOM  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	P  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||||||||||
P  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
j=1  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
  | 
	X  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	X  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	Z  | 
	x  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	X  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|
  | 
	[ 1 uj  | 
	(x)]0  | 
	= [  | 
	1 vj (x)]0 = [ '(t)dt]0  | 
	= '(x) =  | 
	
  | 
	1 u0  | 
	(x):  | 
	
  | 
	>  | 
	
  | 
|||||||||||||||||||||||
  | 
	
  | 
	
  | 
	
  | 
|||||||||||||||||||||||||||||||
  | 
	
  | 
	
  | 
	
  | 
|||||||||||||||||||||||||||||||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	c  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	j  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
  | 
	j=1  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	j=1  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	j=1  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||||
230
