
VLE 3 Wave optics
.pdf
Examples for interference (1)
Example:
1 = 2, = 0 |
|
|
→ amplification |
|
|
|
|
|
|
|
|
|
|||||||||
2,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ψ1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ψ2 |
|
1,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ψres |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
3 |
0,6 |
0,9 |
1,2 |
1,5 |
8 |
1 |
4 |
7 |
3 |
3,3 |
3,6 |
3,9 |
4,2 |
4,5 |
8 |
1 |
4 |
7 |
6 |
6,3 |
-0,5 |
0, |
, |
, |
2, |
2, |
|
, |
, |
, |
5, |
|
||||||||||
1 |
2 |
|
4 |
5 |
5 |
|
|||||||||||||||
-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-1,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-2,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31
Prof. M. Schmidt
Institute of Photonic Technologies, Univ. Erlangen, Germany

Examples for interference (2)
Example:
1 = 2, = |
|
|
→ cancellation |
|
|
|
|
|
|
|
|
|
|
||||||||
1,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ψ1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ψ2 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ψres |
0,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
3 |
6 |
9 |
,2 |
,5 |
8 |
1 |
4 |
7 |
3 |
3 |
6 |
9 |
2 |
5 |
4,8 |
1 |
4 |
7 |
6 |
,3 |
|
0, |
0, |
0, |
1 |
1 |
1, |
2, |
2, |
2, |
|
3, |
3, |
3, |
4, |
4, |
5, |
5, |
5, |
|
6 |
|
-0,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-1,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32
Prof. M. Schmidt
Institute of Photonic Technologies, Univ. Erlangen, Germany

Examples for interference (3)
Example
1 = 2, = 2 /3 → phase shift with same amplitude |
|
|
|||||||||||||||||||
1,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ψ1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ψ2 |
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ψres |
|
|
|
|
|
0,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
0,3 |
0,6 |
0,9 |
1,2 |
1,5 |
1,8 |
2,1 |
4 |
7 |
3 |
3,3 |
3,6 |
3,9 |
2 |
5 |
8 |
1 |
5,4 |
5,7 |
6 |
6,3 |
|
, |
, |
|
4, |
4, |
4, |
5, |
|
|||||||||||||
|
2 |
2 |
|
|
|||||||||||||||||
-0,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-1,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33
Prof. M. Schmidt
Institute of Photonic Technologies, Univ. Erlangen, Germany

Examples for interference (4)
Example:
1 = 2 2 |
|
|
|
→ beat |
|
|
|
|
|
|
|
|
|
|
|
|
||||
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ψ1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ψ2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ψres |
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
2 |
3 |
4 |
5 |
6 |
17 |
18 |
9 |
0 |
-0,5 |
|
|
|
|
|
|
|
|
|
1 |
1 |
1 |
1 |
1 |
1 |
2 |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-1,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34
Prof. M. Schmidt
Institute of Photonic Technologies, Univ. Erlangen, Germany

Examples for interference (5)
source: www.mseu.de, 07.10.09
35
Prof. M. Schmidt
Institute of Photonic Technologies, Univ. Erlangen, Germany

Superposition of two waves
Superposition of two waves with the same wavelength
→- /4 < < + /4: constructive interference
→/4 < < 3 /4: destructive interference
→3 /4 < < 5 /4: constructive interference, etc. Intensity of the resulting superposition at 1 = 2:
→I I1 I2 2 I1 I2 cos
→Maximal intensity at cos = 1, thus at = 0, ±2 , ±4 , etc.
→Completely destructive interference at cos = -1, also bei = ± , ±3 , etc.
When two waves are superposed with the same amplitudes I1 = I2 = I0:
→ I0 |
2I0 1 cos 4I0 |
cos2 |
|
|
|||
|
Imax 4I0 and Imin |
2 |
|
Thus: |
0 |
→ Intensity is quadrupled with doubled amplitude
36
Prof. M. Schmidt
Institute of Photonic Technologies, Univ. Erlangen, Germany

5. Interference for measurement instrumentation
37
Prof. M. Schmidt
Institute of Photonic Technologies, Univ. Erlangen, Germany

Coherence
Coherence denotes, that there is a distinct phase relation between two waves. It is the condition for interference.
There is a distinction between temporal and spatial coherence. To get interference, there must be temporal and spatial coherence.
Temporally and spatially |
Only spatially |
Only temporally |
coherent |
coherent |
coherent |
time axis |
Source: http://de.wikipedia.org, 14.10.2008 |
|
|
38
Prof. M. Schmidt
Institute of Photonic Technologies, Univ. Erlangen, Germany

Coherence length
Coherence length is the distance from a coherent source to a point where a wave maintains a specified degree of coherence. Within this distance, the wave in question is most similar to a perfect sinusoidal wave. The significance is that wave interference will be strong within a coherence length of the source, but not beyond it.
high
and
low
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
coherence lengths |
|
|
|
|
|
|
|
Source: http://de.wikipedia.org, 14.10.2008 |
Coherence lengths for different light sources:
Light source |
Coherence length |
Sun light |
Few µm |
Thermal light sources |
Up to approx. 500 mm |
Laser |
Up to several km |
|
|
|
39 |
|
Prof. M. Schmidt |
|
Institute of Photonic Technologies, Univ. Erlangen, Germany |
|
|

Wave front and amplitude distribution
Generation of two coherent waves: wavefront and amplitude split
Wave front distribution |
Amplitude distribution |
|
Coherent
partial beam Double slit
Point source
Plane wave
Incoming Coherent beam
cylinder waves
Beam spliter
40
Prof. M. Schmidt
Institute of Photonic Technologies, Univ. Erlangen, Germany