Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

VLE 3 Wave optics

.pdf
Скачиваний:
8
Добавлен:
12.03.2015
Размер:
3.44 Mб
Скачать

Optics and optical technologies

Lecture part 03:

Wave optics

1

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

Additional literature

E. Hecht: Optik. Oldenburg Verlag

F. Pedrotti; L. Pedrotti: Optik für Ingenieure. Springer Verlag. 2005 (www.springerlink.com)

B. Saleh: Grundlagen der Photonik. Wiley VCH. 2008

2

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

Overview

1.Basics of wave motion

2.Three dimensional wave description

3.Electro magnetic waves

4.Superposition, interference

5.Interference for measurement instrumentation

6.Fresnel-Huygens-Principle

7.Diffraction basics

8.Fresnelund Fraunhofer-diffraction

9.Double slit and grating

3

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

1. Basics of wave motion

4

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

Types of waves

Transverse waves

Propagation direction

Oscillation direction

e.g. Water waves

source: www.gymnasium-parsberg.de, 07.10.09

Longitudinal wave

Propagation direction

source: www.baunetzwissen.de, 07.10.09

Oscillation direction e.g. Sound waves

source: http://leifi.physik.uni-muenchen.de, 07.10.09

5

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

Waves (1)

In general:

 

 

3,5

 

 

 

 

A wave is a moving

 

 

3

v = 1 m/s

 

 

Distortion

 

t=0s

 

 

 

 

 

 

 

 

 

 

 

t=1s

 

 

 

 

 

 

 

2,5

 

 

 

 

 

 

t=2s

 

 

 

 

Assumption: moves with constant

 

 

 

 

 

t=3s

2

 

 

 

 

Speed in direction

(x,t)

 

 

 

 

 

 

 

 

 

 

 

f x,t

 

 

1,5

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

One dimensional wave function:

 

 

 

 

 

 

0,5

 

 

 

 

(x, t) f (x t)

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

-2

-1

0

1

2

3

4

 

 

 

 

x

 

 

 

Example: x 3 / 10x2

1 f x

x, t 3 / 10 x t 2

1

 

 

Moving of the wave in positive x-direction:

 

 

Representation in the diagram for = 1 m/s at different points in time, shape of the wave does not change

For (x+ t) the wave would move in negative x-direction.

6

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

Waves (2)

Representation as a differential equation:

2

 

1 2

→ One-dimensional wave equation

x2

2

t2

 

Harmonic wave: Sine - / cosine function

x,t f x t Asin k x t

with A – Amplitude, k – wavenumber

→ Solution of the wave equation

Waves are periodic in time and space.

The periodicity in space is called wavelength

x,t x ,t

This means for a harmonic wave that the argument changes by 2

sin k x

 

t

 

sin k x

 

 

 

t

 

sin k x

 

t

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hence it follows:

 

k

 

2

 

k 2

 

with k being called wave number

 

 

 

7

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

Waves (3)

 

 

 

 

 

 

x/

 

) = A sin

 

 

 

 

 

 

 

 

(x) = A sin (2

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

(*A)

0,5

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

-0,5 0

1

2

3

4

 

 

5

6

7

8

9

 

-1

= 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(* )

 

 

 

 

The argument of the sine-function is called phase φ.

At = 0, , 2 , 3 , … (x) = 0

→ also: (x) = 0 at = 0, /2, , 3 /2, …

8

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

Waves (4)

Temporal period

x,t x,t

sin k x t sin k x t sin k x t 2

With its: :

k or2

The period is equal to the time The inverse is the frequency

1

2

 

 

 

2

 

 

per wave

Further derived quantities: angular velocity

2 2 wave number

1

Equivalent representation of a harmonic wave:

Asin kx t

9

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

Waves (5)

Phase angle:

 

x,t

 

Asin kx

t

 

 

 

kx t

→ at x,t t 0,x 0 0,0 0

General case: x,t Asin kx t

with – original phase (phase constant)

x,t kx t

Change of the phase over time:

 

 

 

→ is equal to the angular velocity

 

 

 

t x

 

 

Chang of the phase over distance:

 

 

k

→ is equal to the wavenumber k

 

 

 

x t

 

 

10

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany