Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

VLE 3 Wave optics

.pdf
Скачиваний:
10
Добавлен:
12.03.2015
Размер:
3.44 Mб
Скачать

Waves (6)

Phase velocity:

 

x

 

 

 

 

 

 

 

 

t

 

k

 

→ Speed, the wave front is moving

Complex representation of the wave equation:

x,t Aei t kx Aei

→ Real part:

Re Aei t kx Acos t kx

→ Imaginary part:

Im Aei t kx Asin t kx

Both representation are suited as description of a harmonic wave.

11

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

2. Three dimensional wave description

12

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

Examples of three dimensional waves

Plane wave

Spherical wave

Circular wave

source: http://www.matheplanet.com, Stand 18.05.2009

13

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

Plane wave (1)

The simplest example of a three dimensional wave is the plane wave Condition: All planes with the same phase are making a sea of planes

→ are normally perpendicular to the movement direction

Mathematical description of a plane which is perpendicular to the vector k and intersects with the point (x0,y0,z0) is described as follows:

Position vector r xex yey zez

The vector starts in a arbitrary point 0 and ends in the point (x,y,z).

Similar description:

 

r r0 x x0 ex y y0 ey z z0 ez

So:

r r0 k . 0

With this the vector r r0 is perpendicular to a plane

14

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

Plane wave (2)

With

k kx ex ky ey kz

ez

Becomes

 

 

kx x x0 k y y y0 kz z z0 0

Or

kx x k y y kz z a

 

With

a kx x0 ky y0 kz z0

const

The shortest equation of plane perpendicular to k is:

k r a konst

15

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

Plane wave (3)

A set of planes with sinusoidal variations r :

r Asin k r

r Acos k r

Or r Aeik r

For every of these terms r is constant above every plane which is defined by

k r konst.

→ Function repeats itself in a distance of in direction of k

 

16

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

Plane waves (4)

 

Only a few planes are shown

 

Planes with the same color shall

 

have the same amplitude

 

 

Periodicity:

 

 

k

 

 

 

 

r

r

 

 

k

 

 

 

 

 

 

 

 

 

k

 

 

k

 

With

k

 

 

 

 

 

 

 

 

 

r

 

 

 

 

Andk being called wave vector

 

and

k / k is the unit vector parallel

to k

17

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

Wave vector and wave front

Scientific notation:

Aei k r Aei k r k / k Aei k r ei k

Hence the following has to be true:

ei k

1 ei 2

 

Therefore:

k 2

and k 2 /

 

The vector k

is the wave vector and k is the wave number

Introduction of the time dependence (same as one dimensional wave):

r, t Aei k r t

with A, , k constant

A plane, connecting all points in time with the same phase is the: wave front.

18

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

Three dimensional wave equation

Three dimensional wave equation:

2

 

2

 

2

k 2

 

 

 

 

 

 

x2

y2

z 2

 

 

 

 

 

 

With k

 

2

 

2

 

2

 

1

2

 

x2

y 2

z 2

2

t 2

 

 

 

 

 

 

 

 

 

 

 

 

,

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simplified representation with the nabla operator:

 

 

x

 

y

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

2

 

 

2

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

1

2

 

x²

y²

z²

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

t 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany

3. Electromagnetic wave

20

Prof. M. Schmidt

Institute of Photonic Technologies, Univ. Erlangen, Germany