Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
35_36 / Эл_ка1 / el_ca1_1.doc
Скачиваний:
27
Добавлен:
12.03.2015
Размер:
395.78 Кб
Скачать

1.3. Разновидности диодов

Полупроводниковым диодом называют полупроводниковый прибор с одним электрическим переходом и двумя внешними выводами.

Электрический переход чаще всего образуется между двумя по­лупроводниками с разным типом примесной электропроводности.

Иногда электрический переход образуется между полупроводни­ком р- или n-типа и металлом, такой переход называют контактом металл - полупроводник.

Таблица 1.1

Тип диода

Обозначение

Выпрямительный

Стабилитрон

Туннельный

Варикап

Классифицируют диоды по различным признакам:

по основному полупроводниковому материалу - германиевые, из арсенида галлия, кремниевые;

по физической природе процессов, обусловливающих их работу, - туннельные, фотодиоды, светодиоды и др.;

по назначе­нию - выпрямительные, импульсные, стабилитроны, варикапы и др.;

по технологии изготовления электрического перехода - сплавные, диффузионные и др.;

по типу электрического пepeхода - точечные, плоскостные.

Основными являются классификации по типу электричес­кого перехода и назначению диода. В табл.1.1 приведены обозначе­ния некоторых типов диодов.

Точечные диоды. Такие диоды имеют очень малую площадь элек­трического перехода. Точечный электрический переход создается в месте контакта небольшой пластинки полупроводника и острия металлической проволочки даже при простом их соприкосновении. Более надежный точечный электрический переход образуется формовкой кон­такта, для чего через собранный диод пропускают короткие импуль­сы тока (порядка нескольких ампер). В результате формовки острие проволочки надежно приваривается к пластинке полупроводника. При этом из-за сильного местного нагрева материал острия проволочки расплавляется и диффундирует в пластинку полупроводника, образуя слой иного типа, чем полупроводник. Между этим слоем и пластинкой образуется р-n-переход полусферической формы. Площадь р-n-пере­хода составляет примерно 102 - 103 мкм2 . Точечные диоды в основ­ном изготовляют из германия n-типа, проволочку (диаметром 0,05 -0,1 мм), из материала который для германия n-типа должен быть акцептором (например, бериллий). Иногда острие проволочки для по­лучения высококачественного р-n-перехода покрывают индием или другим акцептором.

Благодаря малой площади р-n-перехода емкость точечных ди­одов незначительна и составляет десятые доли пикофарады. Поэто­му точечные диоды используют на высоких (порядка сотен мегагерц) и сверхвысоких частотах. Их применяют в основном для выпрямления переменного тока высокой частоты (выпрямительные диоды высоко­частотные) и в импульсных схемах (импульсные диоды). Из-за ма­лой мощности, рассеиваемой р-n-переходом (~ 10 мВт), их можно использовать для выпрямления только малых переменных токов.

Плоскостные диоды. Такие диоды имеют плоский электрический переход. Его площадь может составлять от сотых долей квадратных миллиметров (микроплоскостные диоды) до нескольких десятков квадратных сантиметров (силовые диоды). Переход, выполняют в ос­новном методами вплавления или диффузии.

Плоскостные диоды используют для работы на частотах до 10 кГц. Ограничение по частоте связано с большой емкостью р-n-перехода (до десятков пикофарад).

Плоскостные диоды, как и точечные, могут быть выполнены с контактом металл - полупроводник. Емкость электрического пе­рехода таких диодов небольшая, поэтому их используют для работы в импульсных режимах (сверхскоростные импульсные диоды).

Плоскостные диоды бывают малой мощности (до 1 Вт), средней мощности (на токи до 1 А, напряжение до 600 В) и мощные (на токи до 2000 A и выше).

Выпрямительные диоды. В выпрямительных диодах используется свойство односторонней проводимости р-n-перехода. Их применяют в качестве вентилей, которые пропускают переменный ток только в одном направлении. Вентильные свойства диода, зависят от того, насколько мал обратный ток. Для уменьшения обратного тока необ­ходимо снижать концентрацию неосновных носителей, что может быть обеспечено за счет высокой степени очистки исходного полупровод­ника. Обычно применяют полупроводники, в которых на 109 - 1010 атомов основного элемента приходится один атом примеси.

Вольт-амперные характеристики реальных диодов несколько от­личны от характеристики идеального р-n-перехода: их вид зависит от рода основного полупроводникового материала, площади р-n-перехода, температуры. На рис.1.8 показано изменение вольт-ампер­ной характеристики диода с температурой. Особенно сильно влияние температуры сказывается на обратной ветви характеристики, так как с ростом температуры возрастает тепловой ток. С ростом обратно­го тока увеличивается нагрев р-n-перехода, что может привести к тепловому пробою. Верхний предел рабочих температур для герма­ниевых диодов составляет 85 - 100° С, для кремниевых - до 200° С.

К основным параметрам диодов относятся:

Iпp.cp. - среднее значение прямого тока;

Uпр.ср.- прямое падение напряжения;

Iобр. - обратный ток через вентиль;

Umax.обр.- максимальное обратное напряжение.

В табл.1.2 приводятся параметры некоторых выпрямительных диодов.

Импульсные диоды. Диоды, предназначенные для работы в им­пульсных режимах, называются импульсными. Их используют в быстро­действующих импульсных схемах (логические схемы, диодные ограни­чители, фиксаторы уровня и др.).

Таблица 1.2

Тип и обозначение прибора

Iпр.ср, А

Uпр.ср, В

Uобр.max, В

Iобр., mА

Кремниевые диоды малой мощности

КД103А-КД105В

0,1 - 0,3

1 - 1,2

30 – 600

0,05 - 0,3

Д206 – Д211

0,1

1

100 – 600

0,05

Д217 – Д218

0,1

0,7

800 – 1000

0,05

Кремниевые диоды средней мощности

Д202 – Д205

0,4

1

100 – 400

0,5

Д214 – Д215Б

2 - 10

1

100 – 200

3

Д242 – Д248БП

5 - 10

1 – 1,5

100 – 600

3

Кремниевые силовые диоды

В10 – В500

10 - 500

1,35 – 2,2

100 – 3800

6 – 40

ВВ320 – ВВ500

320 - 500

1,7 – 2,2

100 – 1400

40

ВЛ10 – ВЛ320

10 - 320

1,35 – 1,6

400 – 1500

4 - 20

Рассмотрим работу диода, у которого область р-типа являет­ся базой (область в которую инжектируются (впрыскиваются) носи­тели заряда и где они являются неосновными), а область n-типа -эмиттером (область из которой инжектируются носители заряда), при воздействии на диод прямоугольного импульса (рис.1.9,а). При прямом напряжении потенциальный барьер снижается и электро­ны инжектируют из эмиттера в базу. Там они не могут сразу рекомбинировать с дырками базы или пройти ее, поэтому происходит на­копление электронов в базе. Чем больше прямой ток, тем больше электронов накапливается в базе. При прямом напряжении сопротивление р-n-перехода хотя и нелинейно, но очень мало, поэтому оно почти не влияет на ток, и импульс тока искажается очень незначи­тельно (рис.1.9,в).

Обратный ток в первый момент будет значительным, а обратное сопротивление резко уменьшится. Это объясняется тем, что накоп­ленные в базе электроны начнут перемещаться в сторону р-n-пере­хода и, таким образом, образуют импульс обратного тока. Этот им­пульс будет тем больше, чем больше носителей заряда накопилось в базе. Заряды, накопленные в базе, втягиваясь полем р-n-перехода, перемещаются в эмиттер, часть их рекомбинирует в базе с дырка­ми, и обратное сопротивление восстанавливается до нормального значения. Процесс уменьшения заряда в базе называется рассасыва­нием. Время tвoc , в течение которого обратный ток изменяет­ся от максимального значения до установившегося называется вре­менем восстановления обратного сопротивления. Это важный параметр импульсных диодов. Обычно время восстановления менее десятых долей микросекунды. Кроме названных выше параметров импульсные ди­оды характеризуются максимально допустимым прямим импульсным током.

Туннельные диоды. Туннельным диодом называют полупроводнико­вый прибор, сконструированный на основе вырожденного полупровод­ника (т.е. полупроводника с большим содержанием примеси), в ко­тором при обратном и небольшом прямом напряжении возникает тун­нельный эффект и вольт-амперная характеристика имеет участок с отрицательным дифференциальным сопротивлением.

Вследствие большого содержания примесей сопротивления об­ластей р-и n-типов очень малы, а ширина р-n-перехода составляет примерно 0,02 мкм, что в сто раз меньше, чем в других полупровод­никовых диодах. Напряженность электрического поля в таких р-n-переходах достигает огромной величины - до 106 В/см.

На рис.1.10 изображена вольт-амперная характеристика тун­нельного диода.

Основными параметрами туннельных диодов являются максималь­ное (точка а) и минимальное (точка в) значения токов на вольт-амперной характеристике и их отношение.

Туннельные диоды обладают усилительными свойствами (учас­ток ав) и могут работать в схемах как активные элементы. Они находят широкое применение в сверхбыстродействующих ЭВМ в качестве быстродействующих импульсных переключающих устройств и в генераторах высокочастотных колебаний. На туннельных диодах создают схемы мультивибраторов, триггеров, которые служат ос­новой для построения логических схем, запоминающих устройств, регистров и т.д. Туннельные диоды могут работать в широком ди­апазоне температур, они просты в конструкции, малогабаритны. Их изготовляют на основе сильнолегированного германия или арсенида галлия,p-n-переход получают методом вплавления примесей. Более подробно о сущности туннельного эффекта изложено в дополнительной литературе.

Стабилитроны. Это полупроводниковые диоды, принцип работы которых основан на том, что при обратном напряжении на p-n-переходе в области электрического пробоя напряжение на нем изме­няется незначительно при значительном изменении тока. Стаби­литроны предназначены для стабилизации напряжений и использу­ются в параметрических стабилизаторах напряжения, в качестве источников опорных напряжений, в схемах ограничения импульсов и др. Напряжение стабилизации (пробивное напряжение) является ра­бочим. Оно зависит от свойств полупроводника, из которого изго­товляют диод, а также технологии изготовления прибора.

Если используется исходный полупроводник с высокой концентрацией примеси (низкоомный), то р-n-переход будет узким и наблю­дается туннельный пробой. Рабочее напряжение при этом небольшое /до 6 В/. В высокоомных полупроводниках р-n-переход широкий, пробой носит характер лавинного, рабочее напряжение больше (по­рядка 8 В и более). Все стабилитроны изготовляют на основе крем­ния, так как его применение обеспечивает малый обратный ток и допускает нагрев р-n-перехода до относительно высоких температур.

Основными параметрами стабилитронов являются:

напряжение стабилизации;

минимальный и максимальный ток стабилитрона;

дифференциальное сопротивление на участке стабилизации

Rд = dUст/dIст;

температурный коэффициент напряжения на участке стабилизации TKU = (dUст/dT)·100% .

Варикапы. Это полупроводниковые диоды, в которых использо­вано свойство р-n-перехода изменять барьерную емкость при изме­нении обратного напряжения. Таким образом, варикап можно рассмат­ривать как конденсатор с электрически управляемой емкостью. Обычно их изготовляют из кремния.

Соседние файлы в папке Эл_ка1