- •2) Законы Ньютона. Теорема о движении центра инерции.
- •3) Энергетические характеристики. Потенциальное поле сил. Консервативные и неконсервативные силы.
- •4) Законы сохранения энергии, импульса, и момента импульса механических систем.
- •5) Колебательное движение. Основные понятия: гармонические колебания, осциллятор, амплитуда, частота, период, фаза колебания.
- •6) Уравнение гармонических колебаний в дифференциальной форме.
- •7) Законы изменения величин, характеризующих гармонические колебания.
- •8) Сложение колебаний одинаковой направленности и одинаковой частоты. Векторная диаграмма.
- •9) Биения.
- •10) Сложение взаимно перпендикулярных колебаний.
- •11) Затухающие колебания. Уравнения затухающих колебаний в дифференциальной и интегральной форме, логарифмический декремент затухания.
- •12) Вынужденные колебания. Резонанс.
- •13) Волны. Основные понятия: продольные и поперечные, бегущие и стоячие волны, фронт волны, волновая поверхность, фазовая и групповая скорость.
- •14) Уравнение плоской бегущей волны. Графики, характеризующие смещение точек, участвующих в колебательном процессе, от координаты, от времени.
- •15) Энергия упругой волны. Вектор Умова - Пойтинга.
- •16) Сложение волн. Принцип суперпозиции. Условие образования максимумов и минимумов при интерференции.
- •17) Стоячие волны. Замечание о стоячих волнах в замкнутом пространстве.
- •18) Основные понятия термодинамики: система, параметры состояния, состояние, процесс, графическое изображение процессов, внутренняя энергия, идеальный газ, уравнение состояния, теплоемкость.
- •19) Первое начало термодинамики. С вязь между удельными и молярными теплоемкостями.
- •20) Работа расширения идеального газа в изопроцессах.
- •21) Адиабатический процесс. Уравнение Пуассона.
- •22)Классическая теория теплоемкости идеального газа.
- •23)Основные положения молекулярно - кинетической теории газов и её особенности.
- •24) Основное уравнение молекулярно - кинетической теории газов.
- •25)Распределение молекул идеального газа по скоростям. Наивероятнейшая, средняя квадратичная и средняя арифметическая скорости.
- •26) Среднее число столкновений и средняя длина свободного пробега молекул газа.
- •27) Распределение молекул газа во внешнем поле сил тяготения. Барометрическая формула Лапласа.
- •28) Распределение Больцмана.
- •29) Явление переноса. Диффузия, теплопроводность, внутреннее трение.
27) Распределение молекул газа во внешнем поле сил тяготения. Барометрическая формула Лапласа.

![]()
:

![]()
где P0 — константа,
()
![]()
![]()
Согласно распределению Больцмана число частиц, обладающих определенными значениями потенциальной энергии определяется отношением величины потенциальной энергии U к тепловой энергии частицы kБT. Чем больше энергия теплового движения, тем более разупорядочена система частиц, значит, тем более однородно распределены частицы в пространстве. В самом деле, если

и из формулы (2.11) следует, что n = n0 при любом значении U. В случае kБT << U распределение частиц максимально упорядочено: плотность частиц максимальная состоянии с минимальной потенциальной энергией Umin, в то время как плотность частиц в других состояниях равна нулю.
![]()
R1 = R2 = R
![]()
![]()
![]()
28) Распределение Больцмана.
Распределение Больцмана — распределение вероятностей различных энергетических состояний идеальной термодинамической системы (идеальный газ атомов или молекул) в условиях термодинамического равновесия; открыто Л. Больцманом в 1868—1871.
Согласно
распределению
Больцмана
среднее число частиц с полной энергией
равно
![]()
где
—
кратность состояния частицы с энергией
—
число возможных состояний частицы с
энергией
.
Постоянная
находится
из условия, что сумма
по
всем возможным значениям
равна
заданному полному числу частиц
в
системе (условие нормировки):
![]()
В
случае, когда движение частиц подчиняется
классической механике, энергию
можно
считать состоящей из
кинетической энергии
(кин)
частицы (молекулы или атома),внутренней энергии
(вн)
(например, энергии возбуждения электронов)
ипотенциальной энергии
(пот)
во внешнем поле, зависящей от положения
частицы в пространстве:
![]()

29) Явление переноса. Диффузия, теплопроводность, внутреннее трение.
|
|
Переноса явления, кинетические процессы, необратимые процессы, в результате которых в физической системе происходит пространственный перенос электрического заряда, массы, импульса, энергии, энтропии или какой-либо др. физической величины. П. я. описываются кинетическими уравнениями (см. Кинетика физическая). |
Диффу́зия
процесс взаимного проникновения молекул
одного вещества между молекулами
другого, приводящий к самопроизвольному
выравниванию их концентраций по всему
занимаемому объёму. Примером диффузии
может служить перемешивание газов
(например, распространение запахов) или
жидкостей (если в воду капнуть чернил,
то жидкость через некоторое время станет
равномерно окрашенной). Другой пример
связан с твёрдым телом: атомы соприкасающихся
металлов перемешиваются на границе
соприкосновения. Важную роль диффузия
частиц
играет в физике
плазмы![]()
Теплопроводность один из видов переноса) от более нагретых частей тела к менее нагретым, приводящий к выравниванию температуры. При Т. перенос энергии в теле осуществляется в результате непосредственной передачи энергии от частиц, обладающих большей энергией, частицам с меньшей энергией.
![]()
где λ — коэффициент Т., или просто Т., не зависит от grad T [λ зависит от агрегатного состояния вещества (см. табл.), его атомно-молекулярного строения, температуры и давления, состава (в случае смеси или раствора) и т. д.].
Значения коэффициента теплопроводности λ для некоторых газов, жидкостей и твёрдых тел при атмосферном давлении
![]()
Внутреннее Трение - свойство твердых тел необратимо поглощать
механическую энергию, полученную телом при его деформации. Внутреннее трение проявляется, напр., в затухании свободных колебаний. 2) В жидкостях и газах то же, что вязкость.
![]()
