
- •Содержание
- •Лабораторная работа №1 Макроскопический метод исследования металлов и сплавов
- •Реактивы для травления
- •Макроанализ по виду излома.
- •Макроанализ при помощи макрошлифов.
- •Строение слитка.
- •Порядок выполнения работы
- •Контрольные вопросы.
- •Лабораторная работа №2 Измерение твердости металлов
- •Краткие сведения из теории
- •Определение твердости по Бринеллю
- •Соотношение диаметров шарика и нагрузки при испытании металлов по методу Бринелля
- •Твердость по Бринеллю
- •Практика определения твердости по Бринеллю
- •Определение твердости по Роквеллу
- •Пределы измерения твердости
- •Практика определения твердости по Роквеллу
- •Порядок выполнения работы
- •Контрольные вопросы.
- •Различными методами
- •Лабораторная работа №3 Механические испытания металлов
- •Основные понятия.
- •Испытание на растяжение
- •Стандартные размеры образцов
- •Определение характеристик прочности
- •Определение характеристик пластичности
- •2. Определение ударной вязкости
- •2. Определение предела выносливости
- •Порядок выполнения работы
- •Порядок выполнения работы
- •Лабораторная работа №5 Диаграммы состояния железо - углеродистых сплавов
- •Компоненты и фазы в системе железо – углерод
- •Диаграммы состояния железо-углеродистых сплавов
- •Кристаллизация сплавов Fe-Fe3c
- •Порядок выполнения работы
- •Пояснения к выполнению работы
- •Варианты индивидуальных заданий
- •Лабораторная работа №6 Изучение структуры и свойств углеродистых сталей в равновесном состоянии
- •Порядок выполнения работы
- •Контрольные вопросы
- •Лабораторная работа №7 Изучение структуры и свойств чугунов
- •Белые чугуны
- •Серые чугуны
- •Ковкие чугуны
- •Высокопрочные чугуны
- •Механические свойства чугунов
- •Легированные чугуны
- •Марки и свойства легированных чугунов (гост 7769-82)
- •Марки антифрикционных чугунов, их свойства и назначение (гост 1585-85)
- •Порядок выполнения работы
- •Контрольные вопросы
- •Лабораторная работа №8 Термическая обработка углеродистых сталей
- •Основные понятия
- •Влияние скорости охлаждения на структуру и свойства стали
- •Перлитное превращение
- •Промежуточное (бейнитное) превращение
- •Мартенситное превращение аустенита
- •Виды термической обработки
- •Отжиг стали
- •Нормализация стали
- •Закалка стали
- •Отпуск стали
- •Порядок выполнения работы
- •Контрольные вопросы
- •Лабораторная работа №9 Инструментальные стали
- •Основные понятия
- •Углеродистые инструментальные стали
- •Легированные инструментальные стали
- •Быстрорежущие стали
- •Штамповые стали
- •Стали для штампов холодного деформирования
- •Стали для штампов горячего деформирования
- •Твердые сплавы
- •Состав и твердость твердых сплавов
- •Порядок выполнения работы
- •Контрольные вопросы
- •Лабораторная работа №10 Медные и антифрикционные сплавы
- •Основные свойства меди
- •Общая характеристика и классификация медных сплавов
- •Химический состав и механические свойства деформируемых латуней после отжига (гост 15527-70)
- •Механические свойства и область применения литейных латуней (гост 17711-93)
- •Химический состав и механические свойства оловянных бронз
- •Химический состав и назначение алюминиевых бронз
- •Антифрикционные сплавы.
- •Химический состав и назначение баббитов
- •Порядок выполнения работы
- •Контрольные вопросы
- •Библиографический список
Основные свойства меди
Медь –металл красного (светло – розового) цвета с плотностью 8,94 г/см3, имеющий кристаллическую решётку ГЦК, без полиморфных превращений и температурой плавления 1083º С.
Широкое применение меди обусловлено рядом её ценных свойств и прежде всего высокой электро- и теплопроводностью. Медь принято считать эталоном электрической проводимости и теплопроводности по отношению к другим металлам. Медь обладает высокой пластичностью, хорошей коррозионной стойкостью, удовлетворительной жидкотекучестью.
Медь и её сплавы хорошо обрабатываются давлением, свариваются всеми видами сварки и легко поддаются пайке. На поверхности меди образуется плотная оксидная плёнка, поэтому медь имеет высокую коррозионную стойкость в пресной и морской воде, в атмосферных условиях и различных химических средах (органических кислотах, едких щелочах). Однако медь не противостоит воздействию азотной и соляной кислот, концентрированной серной кислоты, аммиака. Недостатком меди является сравнительно плохая обрабатываемость резанием.
Электрическая проводимость меди зависит от содержания примесей. При наличии даже небольшого количества примесей проводимость резко падает. При ГОСТ 859-78 в зависимости от содержания примесей различают следующие марки меди: М00 ( 99,99% Cu), М0 ( 99,97%Cu), М1 ( 99,9%Cu), М2 ( 99,7%Cu), М3 ( 99,5%Cu).
Наиболее чистую медь марок М00, М0, М1, содержащую не более 0,1% примесей, применяют для проводников тока различных теплообменников. Медь остальных марок, более загрязнённая примесями, пригодна только для производства сплавов различного состава и качества (М3, М4).
Наиболее часто встречающиеся в меди элементы подразделяют на две группы:
Растворимые в меди элементы алюминий (Аl), железо (Fe), никель (Ni), стронций (Sr), цинк (Zn), серебро (Ag) повышают прочность и твердость меди и используются для легирования сплавов на медной основе.
Нерастворимые элементы свинец (Pb), висмут (Bi) ухудшают механические свойства меди. Висмут и свинец даже в тысячных долях процентов резко ухудшают способность меди обрабатываться путём прокатки или волочения. С этими элементами медь образует легкоплавкие эвтектики, которые располагаясь по граница зёрен, при нагреве расплавляются и вызывают красноломкость меди, т. е. приводят к разрушению металла при горячей деформации. Висмут, будучи хрупким металлом охрупчивает медь и её сплавы. Свинец, обладая низкой прочностью, снижает прочность медных сплавов, однако вследствие хорошей пластичности не вызывает их охрупчивание. Кроме того, свинец улучшает антифрикционные свойства и обрабатываемость резанием медных сплавов, поэтому его применяют для легирования.
Механические свойства меди в большей степени зависят от её состояния и в меньшей от содержания примесей. В отожженном виде медь весьма пластична (δ = 50%, HB50, σВ= 240 МПа). В деформированном состоянии (при наклёпке) пластичность меди понижается, но прочность повышается (δ = 2-5%,HB120, σВ= 500 МПа). Исходные свойства меди восстанавливают путём отжига при температуре 600…700ºС.