Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

книги из ГПНТБ / Диденко А.Н. Сверхпроводящие волноводы и резонаторы

.pdf
Скачиваний:
23
Добавлен:
24.10.2023
Размер:
9.47 Mб
Скачать

Подставляя РиЫк

п Р0 из

(5.4(3) и

(5.47) в (5.45) для бегущей вол­

ны, после преобразовании получим

 

 

 

 

Л . « в», -

Яг ( "2"

! _ е - т

-

1 ](^н + А,)2 +üfi •

( 5 ' « )

При

1 отсюда

• о.тучаем

 

 

 

 

 

 

Pmten/Pr

=

U*-

(5.48а)

Аналогичные расчеты можно провести и для резонаторов стоячих волн и при % 1 и é 2 a < 1 получить

Это означает, что для ускорения пучка электронов с током lu до. энергии UK в резонаторе стоячей волны на нагревание стенок должно быть израсходовано в два раза больше мощности, чем_в_ резонаторе бегущей волны, так как амплитуда стоячей волны в Vi раз больше амплитуды бегущей волны. Однако это будет только в том случае, когда коэффициент отражения в кольце очень мал ( Г ^ І О - 5 ) .

Таким образом, приведенные выше результаты свидетельствуют о сильном влиянии даже слабых электронных пучков на электроди­ намические характеристики сверхпроводящих высокочастотных си­ стем. Особенно это касается таких параметров, как к. п. д. системы и нагруженная добротность. К. п. д. сверхпроводящих систем может приближаться к 100%, и это является присущей только им особенно­ стью. Что касается собственных добротностей таких систем, то, на­ чиная с вполне определенных токов, улучшать их (с точки зрения мощности используемых высокочастотных генераторов) не имеет смысла. Это очень важный вывод, поскольку для изготовления таких резонаторов можно использовать сверхпроводящие сплавы, имеющие не особенно малые потерн в СВЧ диапазоне, но зато имеющие более высокие критические поля.

5.3.Эффект укорочения импульса

Одной из интересных особенностей, появляющихся при взаимодействии частиц с полями круглых диафраг­ мированных волноводов, является так называемый эффект укорочения импульса. Впервые он наблюдался на линейном электронном ускорителе в одной из англий­ ских лабораторий в начале 60-х годов. По-видимому, он может наблюдаться не только в ускорителях, но и гене­ раторах СВЧ колебаний. Сущность этого эффекта за­ ключается в следующем '[111, 112].

В круглом диафрагмированном волноводе нижней полосой пропускания является полоса, принадлежащая симметричной волне типа Eni. Взаимодействие частиц

160

с полем этой волны при фазовой скорости волны, близ­

кой к скорости

частиц,

приводит

к

ускорению

частиц

в линейных ускорителях

( і і ф ^ ѵ0)

и

генерации

мощных

колебаний

в

приборах

СВЧ

непрерывного

действия

( О ф ^ и о ) .

Следующая полоса

пропускания принадле­

жит волне ЕНц. Эта волна имеет одну вариацию по ази­ муту, а ее частота примерно в полтора раза больше частоты Еоі волны. Структура поля ЕНц-волны такова, что для нее на оси волновода продольная составляющая электрического поля равна нулю, а радиальная отли­ чается от нуля.

Механизм развития этой неустойчивости в линейных ускорителях сводится к следующему [112]. Сгустки ча­ стиц, пролетая через ускоряющий волновод, возбуждают высокочастотные поля. Те сгустки, которые летят строго по оси волновода, возбуждают только волну Еоі-типа. Те же сгустки, которые смещены относительно оси, кро­ ме основной волны возбуждают еще волну ЕНц-типа. Фазовая скорость этой волны равна или близка скоро­ сти частиц, а ее длина волноводе, естественно, не совпадает с длиной волны Е0 і -типа.

Радиальная составляющая силы Лоренца волны типа ЕНц не равна нулю, и поэтому волна будет оказывать влияние на движение последующих сгустков. Так как в общем случае длины волн типов Еоі и ЕНц несоизме­

римы, то волны ЕНц-типа будут оказывать

воздействие

на

последующие сгустки при различных фазах. Однако

по

абсолютному значению это

воздействие

будет тем

больше, чем в более поздний

момент времени влетает

сгусток в волновод.

 

 

Особенно наглядным процесс представляется в том слу­ чае, когда волна типа ЕНц имеет отрицательную диспер­ сию. Внутри волновода возникает положительная обратная связь, которая и способствует развитию неустойчивости. Это приводит к тому, что начиная с некоторых моментов времени радиальное отклонение частиц может достичь значений, при которых они попадают на стенки и диаф­ рагмы ускоряющего волновода. Из-за этого эффекта, независимо от длительности тока инжекции, частицы могут ускоряться только в течение импульса вполне определенной длительности. Длительность импульса тем меньше, чем больше ток ускоряемых частиц.

Описанное явление называется эффектом укорочения импульса или эффектом обрыва тока. По-видимому, ана-

U - 2 3 I

161

логичное явление может проявляться и в СВЧ генера­ торах с непрерывным взаимодействием и будет приво­ дить к генерированию дополнительной частоты, обуслов­ ленной взаимодействием с волной ЕНц-типа.

К настоящему времени эффект укорочения импульса

для несверхпроводящих волноводов хорошо

изучен как

в экспериментальном, так и в теоретическом

плане [111].

Получены аналитические формулы и построено большое количество графиков, которые позволяют определить,

насколько опасен этот эффект

в волноводных секциях

как без учета, так и с учетом

конечной величины груп­

повой скорости волн в волноводе, оценить фокусирую­ щее воздействие продольных магнитных полей. Коротко эти результаты сводятся к следующему.

Если не учитывать фокусировку и для простоты поло­ жить, что ß r p = , 0 , т. е. что энергия не распространяется вдоль волновода, то выражение для радиального откло­ нения т-го сгустка под действием поля НЕи -волны, генерируемой предыдущими сгустками, может быть записано в следующем виде:

 

 

ш

 

 

 

 

 

Ут®

= Е

[ У . ( 0 ) ^ _ , ( С ) + 1/'8 (0)-ч!я

0 , ;і (С)],

(5.50)

где ys{0)

и

y's{0)

= dys/dt, — начальные

отклонения

и

поперечные

скорости

сгустков. Функции Цт(0)

11

W 0 ) * ( £ )

характеризуют

радиальное отклонение т-го

сгустка при следующих начальных условиях: у т ( 0 ) = б™0,

# » ' ( 0 ) = 0

И

t/m(0)=0,

Ут(0) ='Ôm°, ГДе

Ô,„° —

СИМВОЛ

Кронекера. Эти условия

означают, что нулевой

сгусток

инжектируется в секцию диафрагмированного волновода

с безразмерным единичным начальным отклонением или

углом. В этой

формуле

 

 

 

 

 

 

C =

z l / f L ^ - j ß - ^

,

(5.51)

где z — расстояние

вдоль

ускорителя;

J— импульсный

ток пучка;

Х0

и Хі — длины волн типов

Е0 і и ЕНц соот­

ветственно;

ßrpi =

frpi/c

безразмерная

групповая

ско­

рость ЕНц-волны;

ЕГІ — радиальное

электрическое

поле

ЕНц-волны;

£у_п —продольный

поток мощности;

с?нач—начальная

энергия. Отношение

£г і2 °у_п

°пре-

т

ДеЛяется геометрией Структуры и характеризует откло­ няющее поле.

Полагая

для

простоты ут(0) =

1 и ут'(0)=0

и заме­

няя т]от(0}(£)

их

асимптотическими

значениями,

справед­

ливыми для членов с большим /и, которые и дают основ­

ной вклад, можно получить для ут{£) следующее выра­ жение:

"' і/з

y m = S?Äygze X p (^^4 2 / 3 )- <Б-52)

Из этой формулы следует, что неустойчивость раз­ вивается очень быстро. Амплитуда радиального смеще­ ния ѵп-го сгустка зависит как от номера т, т. е. от дли­ тельности импульса инжекции, так и от расстояния вдоль ускорителя. Максимальное допустимое отклонение ограничено размером апертуры ускорителя. Ввиду неоп­ ределенности первоначального радиального отклонения обычно принимают, что сильная потеря частиц наступает тогда, когда размер пучка по радиусу частиц возрастает на один или на два порядка, т. е. когда

lg I "Qm Ц к с = ^j- lg е (/пч)1 / 3 +

+ і 4 ^ Н

J^{2-

( 5 - 5 3 )

Здесь |т)пг|макс максимальные

отклонения,

которые

могут иметь частицы в пучке.

 

 

Полученные выше результаты справедливы для обыч­ ных ускорителей. Ситуация изменяется, если частицы ускоряются в ускорителе со сверхпроводящими волноводными секциями [113]. Объясняется это следующим. Поскольку в- обычном ускорителе длительность импуль­ са не превышает нескольких микросекунд, то получен­ ные формулы позволяют точно описать картину разви­ тия неустойчивости. Если же длительность импульса большая, как это имеет место в сверхпроводящих уско­ рителях, то при определении силы, действующей на т-й сгусток со стороны всех сгустков, прошедших уже через волновод, необходимо учитывать затухание поля вдоль длины волновода.

Это приведет к тому, что силу воздействия на т-й сгусток со стороны каждого из q прошедших сгустков

11*

163

•необходимо умножить на 'множитель ехр { — (m—'q) £-\ >

характеризующий затухание поля от q-ro сгустка в месте расположения ш'-го сгустка. Здесь n/QH — затухание на расстоянии в одну длину волны.

С учетом сказанного выше выражение для радиаль­ ного отклонения m-i'i частицы можно записать в следую­ щем виде:

 

</=!

 

 

 

Из

этой формулы

следует, что

через время

/-эфф —

=

тЭ ффЯ0 /с, где т т

= {Ѵ3 QJ4vf'2

С, отклонение

дости­

гает своего стациенарного значения, которое зависит только от импульсного тока и затухания в ускоряющих секциях.

Переходя в (5.54) от суммирования к интегрирова­ нию и применяя к полученному интегралу метод Лапла­ са, получим для стационарного поперечного отклонения следующее выражение:

І У У С Т І = (j7f=j е х р [ \ 1 C ^ j J - (5.55)

Следовательно, если длина импульса пнжекцин пре­ вышает і0фф, радиальное отклонение сгустков с /№>ітЭ фф не будет уже возрастать с ростом m по экспоненциаль­

ному закону,

а будет

стремиться к стационарному зна­

чению, определяемому

(5.55).

Используя

(5.55),

можно сравнить число частиц,

ускоряемых в линейных ускорителях со сверхпроводящи­

ми и с обычными

секциями. Если, как в [112], положить

l g | # m Ä o n | = 2

для

допустимого

значения тцоп\,

то

допустимое значение параметра

£ может быть определе­

но кз следующего

выражения:

 

 

Обычно

нагруженная добротность сверхпроводящих

секций линейных ускорителей, рассчитанных на большие

токи,

QH«

1 О Ч - 1 0 7 . Подставляя такие значения

доброт­

ностей

в

(5.56), получаем, что £ Д о п ~ 10 - 2 - ^3 • 10_ 3 . Для

линейных

ускорителен с обычными секциями

Сд.о п ~ 1 -г-

164

0,1. Это означает,

что допустимый

 

импульсный ток

в сверхпроводящих

ускорителях, пропорциональный £ д о ш

будет примерно на 3—4 порядка

меньше, чем в обычных.

Подставляя значение С д о п в выражение для эффек­

тивной

длительности

импульса

/афф,

получим, что іЭфф~

— 1-НІО мсек т. е. примерно на 3—4

порядка

больше дли­

тельности

импульсов

обычных

линейных

ускорителей.

Таким

образом,

с

учетом

эффекта

укорочения

импульса

в сверхпроводящих

линейных

ускорителях за

один

импульс длиной

/ з ф ф

можно ускорить

примерно то

же число

частиц, что и

в обычном

ускорителе

но за

более

короткий

(примерно

1—2 мкс)

импульс.

Однако

поскольку

в сверхпроводящих

ускорителях

отклонение

уже не возрастает,

если

/>£Э фф, то это

позволяет

перей­

ти в таких

ускорителях к непрерывному

режиму, не опа­

саясь

эффекта

укорочения.

Переход

к непрерывному

режиму

позволит,

в

свою

 

очередь,

увеличить

число

частиц,

ускоренных

в сверхпроводящих

ускорителях за

единицу

времени. Нетрудно

 

показать,

что если

Q„~10 8

и Сдоп^ Ю - 2 , то,

работая

в непрерывном

режиме,

в нем

можно

ускорить

примерно

на порядок

больше

частиц,

чем в обычном линейном ускорителе, работающем с ча­ стотой повторения импульсов 400 Гц и почти на 2 поряд­

ка

больше, чем в ускорителе,

работающем с частотой

50

Гц. С увеличением QH

число

частиц уменьшается и

при

<2н»*107 сравнивается

с числом

частиц, ускоренных

в обычном ускорителе, работающем

с частотой 400 Гц.

Все сказанное выше относится к случаю малых груп­ повых скоростей, отсутствия фокусировки частиц и изме­ нения энергии частиц при пролете через ускоряющую секцию. Учет этих фактов, особенно фокусировки, может существенно изменить полученные результаты. Наличие фокусировки приводит к тому, что отклонение от-го сгустка под действием поля первого сгустка т\т может быть записано в следующей форме:

 

(20)

,3/4

ехр

У_21 / 2 СІ / 2 ]. ( 5 . 5 7 )

 

 

 

 

 

где Q — частота

 

поперечных

(бетатронных) колебаний,

обусловленных

фокусирующими

устройствами.

Из этого

выражения видно,

что если

Q велико, то

отклонение

может быть

существенно

уменьшено по

сравнению со случаем отсутствия фокусировки.

165

Обычно фокусировка осуществляется с помощью внешнего продольного магнитного поля или квадрупольных линз. Однако, как было показано в [114], фокуси­ рующий эффект может появляться и при использовании режима стоячих волн. При определенных условиях поле обратной волны будет оказывать фокусирующее воздей­ ствие. Это означает, что с точки зрения обрыва импуль­ са режим работы на стоячих волнах может представлять определенный интерес.

Г л а в а ш е с т а я

ИСПОЛЬЗОВАНИЕ СВЕРХПРОВОДЯЩИХ ВОЛНОВОДОВ И РЕЗОНАТОРОВ В РАЗЛИЧНЫХ ОБЛАСТЯХ НАУКИ И ТЕХНИКИ

6.1. Использование сверхпроводящих резонаторов для создания высокостабильных генераторов СВЧ

Используя сверхпроводящие резонаторы, можно со­ здать генераторы СВЧ, характеризующиеся очень высо­ кой стабильностью [115, 116].

До недавнего времени считалось, что приборы СВЧ по стабильности не могут конкурировать с кварцевыми и тем более квантовыми генераторами. Если, используя кварцевые генераторы, можно получить длительную ста­

бильность 10s—1010,

а используя

квантовые генерато­

ры,— еще

более высокую

стабильность

109—1013, то

стабильность

СВЧ

генераторов,

стабилизированных

с помощью

обычных

несверхпроводящих

резонаторов,

едва достигает

105—106. Поэтому

в тех случаях, когда

к источникам

колебаний

предъявлялись

повышенные

требования на стабильность, всегда применяли кварце­

вые или квантовые генераторы,

хотя

это было связано

с недостатками,

присущими

этим

генераторам. Так,

например, при

использовании

кварцевых генераторов

необходимо умножение частоты-в 103—104 раз, посколь­ ку такие генераторы не работают непосредственно в СВЧ диапазоне. При этом в результате умножения частоты шумы сильно увеличиваются.

Что касается квантовых генераторов, то их недостат­ ком является чрезвычайно малая мощность (примерно

166

1 0 - 1 ° — Ю - 1 2 Вт).- Кроме того, квантовые генераторы работают только на вполне определенной частоте, рав­ ной частоте энергетического перехода для того элемента или соединения, которое используется в качестве рабо­

чего вещества

генератора:

C Ù = ( < § 2

— г д е

<§г и

cgi энергии

энергетических

уровней, а

% — постоянная

Планка. Это приводит к необходимости

использования

сложных

радиотехнических

схем,

когда

требуется

ра­

ботать на

частоте, не совпадающей

с частотой перехода.

іГенераторы СВЧ имеют ряд преимуществ перед квар­ цевыми и квантовыми генераторами: такие генераторы могут быть созданы на любую частоту непосредственно в СВЧ диапазоне, могут перестраиваться по частоте, имеют достаточно большую выходную мощность. Исполь­ зование сверхпроводящих резонаторов позволило сохра­ нить эти достоинства СВЧ генераторов, повысить их ста­ бильность до уровня кварцевых и квантовых генерато­ ров и создать на их основе высокостабильные генера­ торы СВЧ, обладающие целым рядом высоких качеств.

Различают два вида нестабильности — длительную и кратковременную. Первая зависит от медленно проте­ кающих процессов: изменения температуры радиоустрой­ ства, давления окружающей среды, питающих напряже­ ний и т. д. Эти факторы являются иеспецифичными для той или иной схемы стабилизации. Поэтому и методы снижения влияния таких дестабилизирующих факторов зависят от типа резонаторов, а не от схемы, в -которой они используются.

В отличие от длительной нестабильности кратковре­ менная нестабильность зависит от каких-то быстрых процессов. В [117] было показано, что все схемы генера­ торов, обеспечивающих кратковременную стабильность частоты, можно разбить на три группы, отличающиеся характером установления колебаний.

К первой группе целесообразно отнести генераторы, в которых при отклонении частоты генерируемых коле­ баний от собственной частоты стабилизирующего резо­ натора вырабатывается некоторый сигнал ошибки, пода­ ваемый вновь в генератор при помощи низкочастотных радиоцепей. Так как постоянные времени низкочастот­ ных радиоцепей очень велики по сравнению с периодом СВЧ колебаний, то такие схемы не реагируют на быст­ рые уходы частоты. Поэтому такие схемы неудовлетво-

1§7

рительны

с точки зрения обеспечения кратковременной

стабильности.

Ко второй и третьей группам относятся генераторы,

в которых

высокодобротный стабилизирующий резона­

тор влияет на частоту генератора через СВЧ цепи. Раз­ личие между этими группами сводится к тому, что ко второй группе относятся генераторы, в которых вывод энергии в полезную нагрузку осуществляется непосред­ ственно из высокодобротного стабилизирующего резона­ тора, а к третьей группе — те генераторы, в которых вывод энергии в полезную нагрузку осуществляется из низкодобротной части схемы.

Подробный анализ, проведенный в [117], показал, что в генераторах второй группы колебания на частотах, не равных резонансной, не успевают нарасти в нагрузке, если длительность возбуждения таких колебаний значи­ тельно меньше постоянной времени их установления в высокодобротном резонаторе. При достаточно высокой добротности стабилизирующего резонатора кратковре­ менная стабильность таких генераторов высока и обыч­ но выше, чем долговременная.

Что касается генераторов, третьей группы, то колеба­ ния частот, не равных резонансной, возбуждаемые в те­ чение времени, большего постоянной времени низкоча­ стотной части системы, успевают нарасти в этой части системы, а значит, и в нагрузке до значительной ампли­ туды. Поэтому, если время усреднения при определении нестабильности меньше времени установления колеба­ ний в высокодобротном резонаторе, то кратковременная стабильность генератора этой группы будет низка. Чем выше добротность стабилизирующего резонатора, тем

больше должно

быть время усреднения, необходимое

для получения

удовлетворительной кратковременной

стабильности. Если время усреднения мало, то кратко­ временная стабильность таких генераторов может быть ниже долговременной.

Сверхпроводящие резонаторы могут быть использова­ ны для стабилизации частоты ламп бегущей волны, монотронов, клистронов и магнетронов.

Впервые сверхпроводящий резонатор для стабилиза­ ции частоты генераторов СВЧ предложил использовать М. С. Хайкин [118]. Им был создан и экспериментально исследован трехсантиметровый генератор на основе ЛБВ со сверхпроводящим стабилизирующим резонатором

в Цепи обратной связи. Функциональная схема этого генератора изображена на рис. 6.1. Оказалось, что ча­ совая нестабильность частоты этого генератора при доб­

ротности

сверхпроводящего

резонатора QH = 3- 107 соста­

вила Ю-9

при Г=2К .

 

 

 

Впоследствии такие же

схемы, но для десятисанти-

метрового диапазона

были

созданы за

рубежом [109,

ПО]. В этих работах

была получена

нестабильность

частоты 1,3-Ю- 9 за 30 мин при QM = 2-10S . При исполь­ зовании резонатора с механической перестройкой часто­

ты для генератора

с выходной мощностью 1 мВт в диа­

пазоне 20 МГц при QJI = 3,3 - 107 и температуре

Г = 2,1±

± 3 - 1 0 - 5 І \ была

получена нестабильность за

1 мин,

't

Рис. 6.1. Функциональная схема генератора на основе ЛБВ со стаби­ лизацией частоты сверхпроводящим резонатором:

/ — ЛБВ ; 2 — феррнтовыіі вентиль; 3 — фазовращатель;

4—индикатор

мощно­

сти: 5 — аттенюатор; 6 — резонатор; 7 — жндкніі азот;

8 — жидкий

гелии.

равная 4,5-10~и .

Нестабильность,

равная

6 , 8 - Ю - 1 0

за

1 мин при Q„ = 4-107 , была достигнута

при

значительно

большей

выходной

мощности

(порядка

1 Вт) при

Т=

= 1,9±3- 10-4 °К.

 

 

 

 

 

 

 

 

 

Хотя возможны

различные

схемы

стабилизации

ча­

стоты, на

первом

этапе сверхпроводящие

резонаторы

использовались для

стабилизации

именно

ЛБВ . Это

объяснялось тем, что осуществление

стабилизации

ЛБВ

со сверхпроводящим

резонатором

в цепи обратной

связи

было наиболее простым. Однако такой генератор имеет недостатки, важнейшими из которых являются следую­ щие.

1. Большая длина высокочастотных трактов, связы­ вающих отдельные элементы генератора. Это делает генератор чувствительным к воздействию внешних дестабилизирующих факторов: температуры и давления окружающей среды, вибрации и т. д.

169

Соседние файлы в папке книги из ГПНТБ