Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

матвед ответы

.docx
Скачиваний:
17
Добавлен:
03.03.2015
Размер:
6.13 Mб
Скачать

22.Диаграмма состояния железо - цементит. В диаграмме состояния железо – цементит (Fe-Fe3C) рассматриваются процессы кристаллизации железоуглеродистых сплавов (стали и чугуна) и превращения в их структурах при медленном охлаждении от жидкого расплава до комнатной температуры. Диаграмма (рис.18) показывает фазовый состав и структуру сплавов с концентрацией от чистого железа до цементита (6,67% С). Сплавы с содержанием углерода до 2,14% называют сталью, а от 2,14 до 6,67% - чугуном. Диаграмма состояния Fe-Fe3C представлена в упрощенном виде. Первичная кристаллизация, т. е. затвердевание жидкого сплава начинается при температурах, соответствующих линии ликвидуса ACD. Точка А на этой диаграмме соответствует температуре 1539° плавления (затвердевания) железа, точка D – температуре ~1600°С плавления (затвердевания) цементита. Линия солидуса AECF соответствует температурам конца затвердевания. При температурах, соответствующих линии АС, из жидкого сплава кристаллизуется аустенит, а линии CD - цементит, называемый первичным цементитом. В точке С при 1147°С и содержании углерода 4,3% из жидкого сплава одновременно кристаллизуется аустенит и цементит (первичный), образуя эвтектику - ледебурит. При температурах, соответствующих линии солидуса АЕ, сплавы с содержанием углерода до 2,14% окончательно затвердевают с образованием аустенита. На линии солидуса ECF сплавы с содержанием углерода от 2,14 до 6,67% окончательно затвердевают с образованием эвтектики (ледебурита) и структур, образовавшихся ранее из жидкого сплава, а именно: в интервале 2,14-4,3% С - аустенита, а в интервале 4,3-6,67% С - цементита первичного (см. рис. 18).В результате первичной кристаллизации во всех сплавах с содержанием углерода до 2,14%, т. е. в сталях, образуется однофазная структура - аустенит. В сплавах с содержанием углерода более 2,14%, т. е. в чугунах, при первич ной кристаллизации образуется эвтектика ледебурита.

23.Вторичная кристаллизация (превращение в твердом состоянии) происходит при температурах, соответствующих линиям GSE, PSK и GPQ. Превращения в твердом состоянии происходят вследствие перехода железа из одной аллотропической модификации в другую (γ в α) и в связи с изменением растворимости углерода в аустените и феррите. С понижением температуры растворимость уменьшается. Избыток углерода выделяется из твердых растворов в виде цементита. В области диаграммы AGSE находится аустенит. При охлаждении сплавов аустенит распадается с выделением феррита при температурах, соответствующих линий GS, и цементита, называемого вторичным, при температурах, соответствующих линии SE. Вторичным называют цементит, выделяющийся из твердого раствора аустенита, в отличие от первичного цементита, выделяющегося из жидкого расплава. В области диаграммы GSP находится смесь феррита и распадающегося аустенита. Ниже линии GP существует только феррит. При дальнейшем охлаждении до температур, соответствующих линии PQ, из феррита выделяется цементит (третичный). Линия PQ показывает, что с понижением температуры растворимость углерода в феррите уменьшается от 0,02% при 727°С до 0,005% при комнатной температуре.В точке S при содержании 0,8% углерода и температуре 727°С весь аустенит распадается и превращается в механическую смесь феррита и цементита - перлит. Сталь, содержащую 0,8% углерода, называют эвтектоидной. Стали, содержащие от 0,02 до 0,8% углерода, называют доэвтектоидными, а от 0,8 до 2,14% углерода - заэвтектоидными При температурах, соответствующих линии PSK, происходит распад аустенита, оставшегося в любом сплаве системы, с образованием перлита, представляющего собой механическую смесь феррита и цементита. Линию PSK называют линией перлитного превращения.При температурах, соответствующих линии SE, аустенит насыщен углеродом, и при понижении температуры из него выделяется избыточный углерод в виде цементита (вторичного)Вертикаль DFKL означает, что цементит имеет неизменный химический состав. Меняется лишь форма и размер его кристаллов, что существенно отражается на свойствах сплавов. Самые крупные кристаллы цементита образуются, когда он выделяется при первичной кристаллизации из жидкости.

24. Все сплавы системы железо – цементит по структурному признаку делят на две большие группы: стали и чугуны. Особую группу составляют сплавы с содержанием углерода менее 0,02% (точка Р), их называют техническое железо.. Структура таких сплавов после окончания кристаллизации состоит или из зерен феррита , при содержании углерода менее 0,006 %, или из зерен феррита и кристаллов цементита третичного, расположенных по границам зерен феррита, если содержание углерода от 0,006 до 0,02 %.

Углеродистыми сталями называют сплавы железа с углеродом, содержащие 0,02…2,14 % углерода, заканчивающие кристаллизацию образованием аустенита.Они обладают высокой пластичностью, особенно в аустенитном состоянии.Структура сталей формируется в результате перекристаллизации аустенита. По содержанию углерода и по структуре стали подразделяются на доэвтектоидные , структура феррит + перлит; эвтектоидные , структура перлит (П), перлит может быть пластинчатый или зернистый; заэвтектоидные, структура перлит + цементит вторичный (П + ЦII), цементитная сетка располагается вокруг зерен перлита.По микроструктуре сплавов можно приблизительно определить количество углерода в составе сплава, учитывая следующее: количество углерода в перлите составляет 0,8 %, в цементите – 6,67 %. Ввиду малой ратворимости углерода в феррите, принимается, что в нем углерода нет.

Сплавы железа с углеродом, содержащие углерода более 2,14 % (до 6,67 %), заканчивающие кристаллизацию образованием эвтектики (ледебурита), называют чугунами.Наличие легкоплавкого ледебурита в структуре чугунов повышает их литейные свойства.Чугуны, кристаллизующиеся в соответствии с диаграммой состояния железо – цементит, отличаются высокой хрупкостью. Цвет их излома – серебристо-белый. Такие чугуны называются белыми чугунами.По количеству углерода и по структуре белые чугуны подразделяются на: доэвтектические , структура перлит + ледебурит + цементит вторичный ; эвтектические , структура ледебурит (Л) ; заэвтектические , структура ледебурит + цементит первичный В структуре доэвтектических белых чугунов присутствует цементит вторичный, который образуется в результате изменения состава аустенита при охлаждении (по линии ES). В структуре цементит вторичный сливается с цементитом, входящим в состав ледебурита.

Фазовый состав сталей и чугунов при нормальных температурах один и тот же, они состоят из феррита и цементита. Однако свойства сталей и белых чугунов значительно различаются. Таким образом, основным фактором, определяющим свойства сплавов системы железо – цементит является их структура.

25.Вид окончательно сформировавшейся микроструктуры сталей и сплавов зависит от содержания в них углерода и может быть определен по структурной диаграмме состояния Fe - Fе3С в соответствии с процессами, которые происходят для соответствующего состава сплава. Микроструктура сталей, содержащих до 0,006% углерода, имеет зернистое строение и представляет собой чистый феррит. Такие стали при небольшой прочности обладают высокой пластичностью и ударной вязкостью. При содержании в сталях углерода от 0,006 до 0,025% (техническое железо) их микроструктура представляет собой зерна феррита и расположенный по границам этих зерен третичный цементит Хрупкая цементитная сетка снижает пластичность и вязкость сталей. Микроструктура сталей с содержанием углерода 0,025...0,8% состоит из зерен феррита и перлита. При этом в сталях с содержанием углерода до 0,1...0,15% еще сохраняются включения третичного цементита. В структуре таких сталей при увеличении содержания углерода увеличивается количество перлита с соответствующим уменьшением феррита, что ведет к повышению прочности и твердости стали с одновременным снижением ударной вязкости и относительного удлинения. При содержании углерода 0,8% микроструктура представляет собой зерна чистого перлита. При рассмотрении под микроскопом перлит имеет вид темных включений неоднородного строения. Вследствие значительной дисперсности структуру перлита можно отчетливо различать только при увеличениях более чем в 500 раз. перлит может иметь пластинчатую или зернистую структуру, что определяют условия охлаждения. При этом сталь с зернистой структурой перлита отличается лучшей пластичностью и обрабатываемостью резанием. В микроструктуре стали, содержащей свыше 0,8% углерода, по границам зерен перлита располагается вторичный цементит, выделяющийся из аустенита при охлаждении вследствие уменьшения растворимости углерода. При содержании в стали 1% углерода цементит образует хрупкую сетку, которая разобщает между собой зерна перлита. Прочность стали при этом снижается. Цементит третичный в сталях и чугунах, а также цементит вторичный в эвтектических и заэвтектических чугунах как самостоятельные структурные составляющие при микроструктурном анализе обычно не обнаруживаются.

26. В белом чугуне весь углерод находится в виде цементита Fe3C, что и определяет его свойства: высокие твердость и хрупкость, хорошую сопротивляемость износу, плохую обрабатываемость режущими инструментами. Структура такого чугуна- перлит, ледебурит и цементит. Белый чугун применяют для получения серого и ковкого чугуна и стали.

27. Механические: твердость, пределы прочности и упругости, ударная вязкость. Физические: цвет, температура плавления, теплопроводность.

28. Динамическая прочность- сопротивление материалов динамическим нагрузкам, т.е. нагрузкам значение, направление и точка приложения которых быстро изменяется во времени. Испытание на твердость: Метод определения твердости приложения нагрузки делится на статический и динамический, а по способу их приложения на методы вдавливания и царапания. Методы определения твердости: по Роквеллу, по Бриннелю, по Виккерсу. Испытание на растяжение(пластичность, относ. удлинение и сужение), испытание на ударный изгиб (ударная вязкость).

29.Влияние углерода на свойства сталей. С ростом содержания углерода в структуре стали увеличивается количество цементита, при одновременном снижении доли феррита. Изменение соотношения между составляющими приводит к уменьшению пластичности, а также к повышению прочности и твердости. Прочность повышается до содержания углерода около 1%, а затем она уменьшается, так как образуется грубая сетка цементита вторичного. Углерод влияет на вязкие свойства. Увеличение содержания углерода повышает порог хладоломкости и снижает ударную вязкость. Повышаются электросопротивление и коэрцитивная сила, снижаются магнитная проницаемость и плотность магнитной индукции. Углерод оказывает влияние и на технологические свойства. Повышение содержания углерода ухудшает литейные свойства стали (используются стали с содержанием углерода до 0,4 %), обрабатываемость давлением и резанием, свариваемость. Следует учитывать, что стали с низким содержанием углерода также плохо обрабатываются резанием.

30.Влияние примесей. В сталях всегда присутствуют примеси, которые делятся на четыре группы. 1.Постоянные примеси: кремний, марганец, сера, фосфор. Марганец и кремний вводятся в процессе выплавки стали для раскисления, они являются технологическими примесями. содержание марганца не превышает 0,5…0,8 %. Марганец повышает прочность, не снижая пластичности, и резко снижает красноломкость стали, вызванную влиянием серы. Он способствует уменьшению содержания сульфида железа FeS, так как образует с серой соединение сульфид марганца MnS. Частицы сульфида марганца располагаются в виде отдельных включений, которые деформируются и оказываются вытянутыми вдоль направления прокатки. Содержание кремния не превышает 0,35…0,4 %. Кремний, дегазируя металл, повышает плотность слитка. Кремний растворяется в феррите и повышает прочность стали, особенно повышается предел текучести, . Но наблюдается некоторое снижение пластичности, что снижает способность стали к вытяжке. Фосфор, растворяясь в феррите, искажает кристаллическую решетку и увеличивает предел прочности и предел текучести , но снижает пластичность и вязкость.Располагаясь вблизи зерен, увеличивает температуру перехода в хрупкое состояние, вызывает хладоломкость, уменьшает работу распространения трещин, Повышение содержания фосфора на каждую 0,01 % повышает порог хладоломкости на 20…25oС.Фосфор обладает склонностью к ликвации, поэтому в центре слитка отдельные участки имеют резко пониженную вязкость.Для некоторых сталей возможно увеличение содержания фосфора до 0,10…0,15 %, для улучшения обрабатываемости резанием.S – уменьшается пластичность, свариваемость и коррозионная стойкость. 2. Примеси внедрения (азот N, кислород О) повышают порог хладоломкости и снижают сопротивление хрупкому разрушению. Неметаллические включения (окислы, нитриды), являясь концентраторами напряжений, могут значительно понизить предел выносливости и вязкость.Очень вредным является растворенный в стали водород, который значительно охрупчивает сталь. Он приводит к образованию в катанных заготовках и поковках флокенов.Флокены – тонкие трещины овальной или округлой формы, имеющие в изломе вид пятен – хлопьев серебристого цвета.Металл с флокенами нельзя использовать в промышленности, при сварке образуются холодные трещины в наплавленном и основном металле.

31. Специальные примеси – специально вводятся в сталь для получения заданных свойств. Примеси называются легирующими элементами, а стали - легированные сталями.Основным легирующим элементом является хром (0,8…1,2)%. Он повышает прокаливаемость, способствует получению высокой и равномерной твердости стали. Дополнительные легирующие элементы.Бор - 0.003%. Увеличивает прокаливаемость, а такхе повышает порог хладоломкости (+20…-60 oС.

марганец – увеличивает прокаливаемость, однако содействует росту зерна, и повышает порог хладоломкости до (+40…-60)oС.

Титан (~0,1%) вводят для измельчения зерна в хромомарганцевой стали.Введение молибдена (0,15…0,46%) в хромистые стали увеличивает прокаливаемость, снихает порог хладоломкости до –20…-120oС. Молибден увеличивает статическую, динамическую и усталостную прочность стали, устраняет склонность к внутреннему окислению. Кроме того, молибден снижает склонность к отпускной хрупкости сталей, содержащих никель.Ванадий в количестве (0.1…0.3) % в хромистых сталях измельчает зерно и повышает прочность и вязкость.Введение в хромистые стали никеля, значительно повышает прочность и прокаливаемость, понижает порог хладоломкости, но при этом повышает склонность к отпускной хрупкости (этот недостаток компенсируется введением в сталь молибдена). При легировании хромомарганцевых сталей кремнием получают, стали – хромансиль (20ХГС, 30ХГСА). Стали обладают хорошим сочетанием прочности и вязкости, хорошо свариваются, штампуются и обрабатываются резанием.Кремний повышает ударную вязкость и температурный запас вязкости.Добавка свинца, кальция – улучшает обрабатываемость резанием. Применение упрочнения термической обработки улучшает комплекс механических свойств.

32. Отжиг состоит в нагреве сталей до определенной температуры, выдержке и затем очень медленном охлаждении, чаще всего вместе с горном или печью. 1. Полный отжиг состоит в нагреве сталей до температуры выше линии Ас3 на 30...50°С. В результате в металле снимаются внутренние напряжения, он становится более мягким и пластичным, но менее твердым.2. Низкий отжиг состоит в нагреве поковок до температуры, немного превышающей критическую 723 °С (примерно до 740...780 °С), с периодическим изменением температуры ниже и выше точки S и медленном охлаждении до 670 °С, после чего охлаждение можно ускорить. Такой отжиг применяют для уменьшения твердости, увеличения пластичности и улучшения обрабатываемости поковок из инструментальных сталей.3. Рекристаллизационный отжиг состоит в нагреве сталей до температуры 650...700 °С и охлаждении на воздухе. С помощью этого отжига снимают наклеп и исправляют структуру сталей, нарушенную во время ковки при низких температурах.4. Нормализационный отжиг (нормализация) состоит в нагреве поковок до температуры 780... ...950 °С, непродолжительной выдержке при ней и последующем охлаждении на воздухе. Нормализацию, как правило, применяют для устранения крупнозернистой структуры, образовавшейся в результате вынужденного или случайного увеличения времени нахождения заготовок в печи для исправления структуры перегретой стали (перегрева), измельчения зерна, смягчения стали перед обработкой резанием и получения при резании более чистой поверхности, а также общего улучшения структуры перед закалкой. В результате нормализации сталь получается несколько тверже и менее пластичной, чем после низкого отжига. Нормализация по сравнению с отжигом более экономичная операция, так как не требуется охлаждения вместе с горном или печью.

Закалка состоит в нагреве углеродистых сталей, содержащих углерода до 0,8%, до температуры Ас3 + (30...50 °С), а сталей с содержанием углерода более 0,8% до температуры Ас1, + (20...40 °С), выдержке при этих температурах и охлаждении в охлаждающей среде о соответствующей скоростью охлаждения. Стали с содержанием углерода меньше 0,25% в результате закалки свои свойства изменяют незначительно, поэтому обычно их не закаливают. Закалку применяют для увеличения твердости, прочности и износостойкости деталей, получаемых из поковок. В практике обычно закаливают рабочие части различного технологического инструмента, измерительного инструмента, тяжелонагруженные и работающие на истирание детали машин.

Отпуск состоит в нагревании закаленной стали до температуры ниже Ас1, выдержке при этой температуре некоторое время и быстрого или медленного охлаждения, как правило, на воздухе. В процессе отпуска в металле структурных изменений не происходит, однако уменьшаются закалочные напряжения, твердость и прочность, а пластичность и вязкость увеличиваются. В зависимости от марки стали и от предъявляемых к детали требований по твердости, прочности и пластичности применяют следующие виды отпусков.

1. Высокий отпуск состоит в нагреве закаленной детали до температуры 450...650°С, выдержке при этой температуре и охлаждении. Углеродистые стали охлаждаются на воздухе, а хромистые, марганцовистые, хромокремниевые - в воде, так как медленное охлаждение их приводит к отпускной хрупкости. При таком отпуске почти полностью ликвидируются закалочные напряжения, увеличивается пластичность и вязкость, хотя заметно уменьшается твердость и прочность стали. Закалка с высоким отпуском по сравнению с отжигом, создает наилучшее соотношение между прочностью стали и ее вязкостью. Такое сочетание термообработки называют улучшением Улучшению подвергают сильнонагруженные детали машии, изготовленные из углеродистых сталей с содержанием углерода 0,3...0,5%.

2. Средний отпуск состоит в нагреве закаленной детали до температуры 300...450°С, выдержке при этой температуре и охлаждении на воздухе. При таком отпуске увеличивается вязкость стали и снимаются внутренние напряжения в ней при сохранении достаточно большой твердости. Он применяется для деталей машин, работающих в условиях трения и динамических нагружеиий.

3. Низкий отпуск состоит в нагреве закалении детали до температуры 140...250 °С и охлаждении с любой скоростью. При таком отпуске почти не уменьшается твердость и вязкость стали, но зато снимаются внутренние закалочные напряжения. После такого отпуска детали нельзя нагружать динамическими нагрузками. Чаще всего его используют для обработки режущего и измерительного инструмента из углеродистых и легированных сталей.

33. Если эвтектоидную сталь, содержащую 0,8% углерода и имеющую структуру перлит нагреть выше Аc1 (727^С), то перлит превратится в аустенит с тем же содержанием углерода (0,8%).

Условия. Если сталь выдерживать длительное время при высоких температурах, происходит интенсивный рост зерна. Это явление получило название – перегрев. Перегрев можно устранить дополнительной термической обработкой, заключающейся в повторном нагреве стали выше Ас1. В результате зерно измельчается, свойства стали возрастают. Если сталь длительное время выдерживать при температуре АС3 в окислительной атмосфере, то происходит образование окислов железа по границам зерен. Это так называемый пережог. Это не устранимый дефект, сталь необходимо переплавлять.

34. Если доэвтектоидную сталь, содержащую, например, 0,4% углерода и имеющую структуру феррит + перлит, нагреть выше Аc1, то перлит превратится в аустенит. Феррит никаких изменений не претерпевает. Аустенит содержит 0,8% углерода, а феррит - 0,02% (точка P). По мере повышения температуры в интервале Аc1-Аc3, феррит будет растворятся в аустените и как бы "разбавлять" его по углероду и в момент достижения температуры Аc3 аустенит будет содержать 0,4% углерода, то есть столько, сколько углерода в стали.

Рост зерна аустенита при нагреве. В момент превращения перлита в аустенит образуется большое количество мелких зерен аустенита. При дальнейшем повышении температуры зерно аустенита начинает расти. Это обусловлено стремлением системы к уменьшению свободной энергии. Различают наследственно мелкозернистые и наследственно крупнозернистые стали. Под наследственной зернистостью понимают склонность аустенитного зерна к росту, отсюда мелкозернистые стали обладают меньшей склонностью аустенитного зерна к росту в отличие от крупнозернистых сталей. Однако при достижении температур 900-950 0 С барьеры, предшествующие росту зерна в наследственно мелкозернистых сталях устраняются, и происходит более интенсивный рост зерна по сравнению с крупнозернистыми сталями. При превращении перлита в аустенит выделяют начальное зерно – размер зерна в момент превращения П в А. Наследственное зерно – склонность аустенитного зерна к росту. И действительное зерно – размер зерна, полученный при конкретных условиях. На свойства стали оказывает влияние момент действительного зерна. С увеличением размера зерна характеристики прочности, и особенно ударная вязкость снижается, а увеличиваются магнитные и электрические свойства и наоборот.

35.Если заэвтектоидную сталь, содержащую, например, 1% углерода и имеющую структуру перлит + цементит, нагреть выше Аc1, то перлит превратится в аустенит с содержанием 0,8% углерода. Цементит никаких изменений не претерпевает и содержит 6,67% углерода. Дальнейший нагрев в интервале Аc1-Аc3 приводит к тому, что цементит будет растворятся в аустените и дополнительно насыщать аустенит углеродом. В момент достижения температуры Аcm аустенит будет содержать 1% углерода, то есть то количество углерода, которое в стали.

Верхняя часть диаграммы характеризует изотермическое распадение аустенита в смесь феррита, цементита. Левее кривой I находится поле, отвечающее переохлажденному аустениту, область между кривыми I и II определяет время распада переохлажденного аустенита, правее кривой II находится поле продуктов распада аустенита: перлита, сорбита и троостита. Инкубационный период распада аустенита изменяется в зависимости от степени переохлаждения последнего: сначала уменьшается до некоторой критической величины, затем вновь увеличивается. Этот период для каждой температуры определяется абсциссой кривой I – начала распадения аустенита. Кривая II показывает, что длительность превращения также зависит от температуры переохлаждения. Прямая M н является границей между верхней и нижней частями диаграммы. Эта прямая характеризует начало мартенситного превращения аустенита и соответствует прямому участку кривой A ” r (см. рис. 2). Нижняя часть диаграммы показывает, что для перевода всего остаточного аустенита в мартенсит необходимо понижать температуру стали до линии M к (конец мартенситного превращения). Кривые изотермического распадения аустенита имеют форму буквы С и называют С-образными кривыми

36.

37. При больших степенях переохлаждения неустойчивость аустенита возрастает, а скорость диффузии углерода резко падает. При переохлаждении аустенита в эвтектоидной стали до 240°С подвижность атомов углерода близка к нулю и происходит бездиффузионное превращение аустенита. При этом меняется тип решетки γ → α, а весь углерод, ранее растворенный в решетке аустенита, остается в решетке феррита. Образуется мартенсит — перенасыщенный твердый раствор внедрения углерода в а-железе. Мартенсит имеет ту же концентрацию углерода, что и исходный аустенит. Из-за перенасыщенности углеродом решетка мартенсита сильно искажена и вместо кубической приобретает тетрагональную форму. При переходе от аустенитной к мартенситной структуре объем и размеры деталей увеличиваются.Мартенситное превращение идет в интервале температур при непрерывном охлаждении. Для эвтектоидной стали оно начинается при 240° и заканчивается при -50°С.Мартенсит имеет высокую твердость и хрупкость. Vкр.- критическая скорость закалки-минимальная необходимая скорость для превращения аустенита в мартенсит. Она зависит от содержания углерода, уменьшается к эвтектоиду и растет с увеличением содержания углерода.

38.

Смотреть вопрос №36

39. Промежуточное (бейнитное) превращение аустенита. В интервале температур промежуточного превращения аустенит распадается с образованием структур, называемых бейнитом (бейнит представляет собой двухфазную смесь кристаллов феррита и цементита). Основная особенность промежуточного превращения состоит в том, что полиморфный переход происходит по мартенситному механизму. Предполагают, что превращение в данном участке объема начинается с перераспределения углерода, в результате которого одни зоны зерен аустенита обедняются, а другие обогащаются углеродом. С уменьшением количества растворенного углерода повышается температура мартенситного превращения. В зонах твердого раствора, обогащенных углеродом, происходит карбидообразование: выделение очень мелких (в виде коротких палочек) кристаллов цементита. Бейнит, образовавшийся при Т=400-550оС называют верхним бейнитом, он имеет перистое мартенситоподобное строение. Бейнит образованный при более низких температурах называют нижним бейнитом, он имеет пластинчатое строение. Верхний бейнит отличается от нижнего характером распределения и составом карбидной фазы. Карбидная фаза в верхнем бейните - цементит, а в нижнем - e-карбид, который заменяется цементитом с увеличением времени выдержки. Верхний бейнит имеет неблагоприятное сочетание механических свойств: пониженная прочность из-за сохранения нераспавшегося аустенита сочетается с весьма невысокими пластичностью и вязкостью. Высокой прочностью и одновременно достаточно высокой пластичностью и вязкостью обладает нижний бейнит.

40. 41. д/э э з/э

Начало выделения избыточного феррита(цементита) на диаграмме отмечается дополнительной кривой. Кол-во выделяющегося избыточного феррита уменьшается с понижением температуры, и при некоторой степени переохлаждения распад начинается непосредственно с образования зародышей эвтектоида.