
- •Оглавление
- •Предисловие
- •Строение тела человека (уровни организации от биомолекул до организма)
- •Уровни организации живой материи
- •Нервная система Общий обзор нервной системы
- •Классификация нервной системы
- •Строение нейрона
- •Механизм возникновения и проведения нервного импульса
- •Движение пд по аксону
- •Центральная нервная система Принципы координации в деятельности цнс
- •Спинной мозг
- •Головной мозг
- •Вегетативная нервная система
- •Влияние симпатической и парасимпатической системы на эффекторные органы
- •Эндокринная система Общий обзор эндокринной системы
- •1 Эпифиз; 2 гипофиз; 3 паращитовидные железы; 4 печень;
- •5 Двенадцатиперстная кишка; 6 корковое вещество почки;
- •7 Семенник; 8 щитовидная железа; 9 вилочковая железа; 10 желудок;
- •11 Надпочечник; 12 поджелудочная железа; 13 яичник
- •Гипоталамо-гипофизарная система
- •Гипофиззависимые железы
- •Гипофизнезависимые железы
- •Периферические эндокринные железы Щитовидная железа
- •Паращитовидные железы
- •Тимус (вилочковая железа)
- •Надпочечники
- •Половые железы
- •Поджелудочная железа
- •Регуляция деятельности желез внутренней секреции
- •ИммунНая систеМа Общий обзор иммунной системы
- •Органы иммунной системы
- •Клетки иммунной системы
- •Иммунитет Биологический смысл
- •Виды иммунитета
- •Антигены
- •Иммунный ответ
- •Неспецифический иммунный ответ
- •Специфический иммунный ответ
- •Взаимосвязь неспецифического и специфического иммунитета
- •Система крови и крообращение Система крови
- •Клетки крови
- •Сердечно-сосудистая система
- •Регуляция работы сердечно-сосудистой системы
- •Дыхательная система и дыхание Краткая характеристика органов дыхательной системы
- •Физиология дыхания
- •Механизм вдоха и выдоха
- •Легочные объемы
- •Регуляция дыхания
- •Дыхание при различных функциональных состояниях организма
- •Методы изучения дыхания
- •Обмен веществ и энергии
- •Пищеварение
- •Органы пищеварительной системы
- •Пищеварение в полости рта
- •Всасывание
- •Регуляция работы пищеварительной системы
- •Выделительная система
- •Мочевыделительная система
- •Механизм мочеобразования
- •Регуляция деятельности почек
- •Опорно-двигательный аппарат
- •Строение и функции костей
- •Соединение костей
- •Отделы скелета
- •Мышечное сокращение
- •Физиология трудовой деятельности Труд. Виды труда
- •Физиологические изменения при мышечной работе
- •Приспособление мышц к статической и динамической работе
- •Синтез атф и потребление кислорода при мышечной работе
- •Сенсорные системы
- •Орган зрения
- •Орган слуха и равновесия
- •Органы вкуса и обоняния
- •Высшая нервная деятельность
- •Образование условных рефлексов
- •Торможение условных рефлексов
- •Аналитическая и синтетическая деятельность коры головного мозга
- •Свойства нервных процессов Типы высшей нервной деятельности
- •Первая и вторая сигнальные системы
- •Высшие психические функции
- •Функциональная система поведения
- •Тестовый контроль Задания для самоподготовки
- •Библиографический список
- •Физиология человека
Синтез атф и потребление кислорода при мышечной работе
Работающая скелетная мышца нуждается в постоянном синтезе АТФ и расходует для этого немалые ресурсы питательных веществ. Установлено, что с увеличением длительности работы меняется преимущественный источник АТФ в сокращающейся мышце (см. рис. 34).
Рис. 34. Источники АТФ в сокращающейся мышце
в зависимости от длительности работы
Так, наличные запасы АТФ в расслабленной мышце крайне малы, они израсходуются сразу после начала работы. Чуть дольше будет поддерживаться уровень АТФ за счет ее образования из креатинфосфата – богатого энергией соединения. Затем активизируется преимущественно анаэробное окисление глюкозы (гликолиз). Однако возможности гликолиза в энергоснабжении мышц ограничены: молочная кислота – конечный продукт процесса – закисляет среду и тормозит активность гликолиза. Ситуацию исправляет переход мышцы на преимущественное окисление жирных кислот. Этот аэробный процесс, не закисляющий среду, может продолжаться значительно дольше. Вот почему мы считаем гликолиз источником энергии для кратковременной работы, а окисление жирных кислот – для длительной.
Непосредственное отношение к энергетике мышцы имеет и ее снабжение кислородом. Изменение потребления кислорода при мышечной работе подразделяют на 3 фазы (см. рис. 35).
I. С началом мышечного сокращения кровоснабжение мышц, доставка и потребление кислорода нарастают постепенно. Некоторый резерв кислорода внутри мышцы обеспечивает миоглобин – белок, содержащий гем, с помощью которого связывается молекула кислорода. В это время синтез АТФ происходит за счет анаэробного окисления глюкозы (гликолиз), а в мышцах и крови накапливается молочная кислота. Формируется так называемый «кислородный долг».
Рис. 35. Изменение потребления кислорода при мышечной работе
II. Транспорт кислорода в работающую мышцу достигает максимума. Синтез АТФ аэробный (преимущественно за счет окисления жирных кислот), потребление кислорода высокое.
III. Потребление кислорода медленно снижается до исходного значения. Это связано с тем, что молочная кислота в печени превращается обратно в глюкозу с затратой АТФ, требуется дополнительное количество кислорода для синтеза АТФ. Так происходит «возврат кислородного долга».
Утомление мышц
Независимо от характера мышечной работы, рано или поздно она будет прекращена в результате развившегося утомления – временного снижения работоспособности. В основе утомления мышц лежат две группы физиологических причин. Во-первых, утомление связано с биохимическими процессами в работающей мышце. Накопление промежуточных и конечных продуктов гликолиза, в том числе молочной кислоты, закисляет среду. Это нарушает активность ферментов, мембранных транспортеров ионов, снижается синтез АТФ и способность мышечного волокна к сокращению также неизбежно снижается. Во-вторых, утомление развивается на уровне нервных центров, посылающих мышце импульс к сокращению. В результате длительного прохождения потока нервных импульсов, в синапсах истощаются запасы нейромедиатора, передача возбуждения замедляется, и сигналы к мышце начинают поступать реже. Сеченов И.М. экспериментально доказал, что наибольшая производительность мышечной работы (сохранение работоспособности и предотвращение утомления) достигается при среднем темпе и величине нагрузки. Это положение в физиологии носит название «закон средних нагрузок».
Кровообращение, дыхание и система крови
при физической работе
Главная задача органов дыхания, кровообращения и системы крови при физической работе – обеспечить сокращающиеся мышцы кислородом и питательными веществами в соответствии с резко возросшей потребностью в них. Однако в организме тренированных и нетренированных людей эта задача решается по-разному: общая закономерность заключается в том, что у тренированных лиц сердечно-сосудистая и дыхательная системы при физической нагрузке работают более экономично, поэтому и работа может совершаться дольше.
Начало физической работы сопровождается наличием устойчивого очага возбуждения в коре больших полушарий головного мозга. Импульсы от этого очага достигают гипоталамуса, что, в свою очередь, вызывает преобладание тонуса симпатического отдела вегетативной нервной системы и выброс надпочечниками адреналина в кровь. Активация симпато-адреналовой системы способствует активизации дыхания и кровообращения.
Основной количественный показатель деятельности сердечно-сосудистой системы – минутный объем кровообращения (МОК), равный произведению частоты сердечных сокращений (ЧСС) на ударный (систолический) объем левого желудочка. МОК возрастает в 5-10 раз с 3-5 л в покое до 20-40 л при физической нагрузке. Это достигается преимущественно за счет увеличения ударного объема у тренированных людей и за счет увеличения ЧСС у нетренированных. Несмотря на то, что учащение сердцебиений при нагрузке возникает рефлекторно, вслед за началом мышечных сокращений (моторно-кардиальный рефлекс), характерно для всех людей, эта реакция более выражена у нетренированных лиц.
Хорошо известно, что длительность сердечного цикла может изменяться за счет периода общей диастолы. Именно в этот период происходит восстановление энергетических ресурсов миокарда, затраченных на систолу. Снижение длительности диастолы чревато нарушением энергообеспечения миокарда. Одновременно в равной мере увеличить ЧСС и ударный объем невозможно: чтобы изгонять в систолу (сокращеие) больше крови, левому желудочку требуется больше времени на наполнение кровью в диастолу (расслабление), значит, продолжительность ее должна возрасти, что недостижимо при увеличенной ЧСС. Сердце тренированного человека сокращается реже, но во время диастолы больше наполняется кровью и более сильным сокращением выталкивает ее в систолу. Этот режим работы сердца более экономичен. Неслучайно у спортсменов нередко наблюдается низкая ЧСС даже в покое.
Физическая нагрузка вызывает перераспределение крови между различными органами (см. табл. 6). Так, сердце, мышцы и кожа получат в 5-10 раз больший объем крови, нежели в покое. Необходимость увеличить кровоснабжение сердца и мышц при нагрузке очевидна, а кожа должна лучше кровоснабжаться с тем, чтобы усилить теплоотдачу путем излучения с поверхности тела и предотвратить перегревание. Желудочно-кишечный тракт при нагрузке оказывается в обедненном кровью положении, поэтому функции его в этот период тормозятся. Важно отметить, что объем крови, проходящий через головной мозг и почки, при нагрузке почти не изменяется.
Таблица 6
Перераспределение крови между различными органами
при физической нагрузке
МОК |
Процентное содержание | |
В покое, % |
При нагрузке, % | |
В целом |
5 л (100 %) |
25 л (100 %) |
Сердце |
5 |
5 |
Головной мозг |
14 |
3 |
Желудочно-кишечный тракт |
22 |
4 |
Мышцы и кожа |
25 |
85 |
Почки |
20 |
3 |
Увеличение МОК закономерно приводит к росту систолического АД до 180-200 мм рт. ст. Диастолическое АД у тренированных и нетренированных лиц реагирует на нагрузку по-разному: уменьшается у тренированных людей и увеличивается у нетренированных. Дело в том, что в ответ на закисление среды, наступающее с началом работы, происходит расслабление гладкомышечных клеток и расширение артерий, питающих скелетные мышцы. Это приводит к снижению общего периферического сопротивления сосудистой системы, а именно его значение и определяет диастолическое АД. У нетренированного человека артерии скелетных мышц не расширяются, поэтому диастолическое АД не снижается.
Функция дыхания изменяется при физической работе сходным образом. Главный количественный показатель эффективности внешнего дыхания – минутный объем дыхания (МОД), равный произведению дыхательного объема (ДО) на частоту дыхательных движений (ЧДД) также возрастает. Известно, что МОД в покое составляет 5-8 л, а при нагрузке увеличивается до 50-100 л и более. Отметим, что МОК способен увеличиваться в 5-10 раз, а МОД – в 10-20 раз!
Аналогично механизмам увеличения МОК, МОД может возрасти либо в основном за счет ЧДД, либо за счет ДО, одновременно использовать оба варианта невозможно. У тренированных лиц МОД увеличивается в большей мере за счет увеличения ДО, то есть человек дышит глубже, но не столь часто (ЧДД до 30 в минуту). Увеличению ДО способствует расслабление гладкомышечных клеток мелких бронхов под действием адреналина крови и симпатических импульсов. У нетренированных лиц преобладает увеличение ЧДД: она может достигать 40 в минуту, возникает одышка – частое поверхностное дыхание с тягостным ощущением нехватки воздуха. Частые сокращения мышц вдоха приведут к их быстрому утомлению, дыхание станет еще более поверхностным. Вот почему увеличение МОД за счет увеличения ЧДД – признак слабой физической подготовки.
Мышечная работа приводит к увеличению количества эритроцитов и гемоглобина, вязкости крови, увеличению содержания кислорода в артериальной и уменьшению углекислого газа в венозной крови. Выраженность изменений зависит от интенсивности работы, что обусловлено рефлекторным сокращением селезенки при сокращении мышц, а также потерей жидкости при потоотделении. Последнее обстоятельство приводит к сгущению крови, ухудшению микроциркуляции в мышцах и снижению работоспособности. Поэтому бесконечно увеличивать число эритроцитов в кровотоке невыгодно для организма. Очень тяжелая, изнуряющая мышечная работа быстро приводит к утомлению и может вызвать уменьшение содержания эритроцитов и гемоглобина в периферической крови за счет их разрушения.
Гемоглобин – главный белок эритроцитов, содержащий гем и предназначенный для транспорта кислорода. Важное свойство гемоглобина – зависимость процессов присоединения и отдачи кислорода от температуры, рН среды и концентрации углекислого газа в крови. В работающей мышце создаются условия, облегчающие отдачу кислорода оксигемоглобином – повышение температуры и снижение рН среды. Усиленное выведение углекислого газа легкими вследствие учащения дыхания облегчает присоединение кислорода. Однако чрезмерное выведение углекислого газа приводит к защелачиванию крови, что затрудняет отдачу кислорода оксигемоглобином в мышцах.
Таким образом, физическая работа вызывает глубокие изменения в функционировании организма человека, прежде всего органов кровообращения и дыхания, которые носят адаптивный характер. Однако возможность активации этих механизмов не беспредельна. Физиология труда вырабатывает критерии, по которым следует оценивать тяжесть физической работы на основании измерения физиологических показателей кровообращения и дыхания.