
- •1. Цель лабораторных работ
- •2. Физические процессы в электронно-дырочных переходах
- •2.1. Понятие и образование электронно-дырочного перехода
- •Диаграмма1
- •Диаграмма 5
- •2.2. Энергетическая диаграмма p-n перехода в равновесномсостоянии
- •2.3. Неравновесное состояние p-n перехода
- •2.3.1. Прямосмещенный p-n переход
- •2.3.2. Обратносмещенный p-n переход
- •2.4. Вольтамперная характеристика реального p-n перехода
- •2.4.1. Прямая ветвь вах реального p-n перехода
- •Для оценки влияния температуры вводится
- •2.4.2. Обратная ветвь вах реального p-n перехода
- •3. Виды пробоев p-n перехода
- •3.1. Общая характеристика пробоя p-n перехода
- •3.2. Тепловой пробой p-n перехода
- •3.3. Полевой пробой
- •3.4. Лавинный пробой
- •4. Схемы экспериментальных исследований
- •5. Лабораторные задания
- •5.1. Лабораторное задание n 1: Исследование характеристик и параметров электронно-дырочных переходов
- •5.2. Обработка результатов эксперимента
- •5.3. Лабораторное задание №2: Исследование характеристик и параметров электрических пробоев в электронно-дырочных переходах
- •5.4. Обработка экспериментальных результатов
- •6. Содержание отчета
- •7. Вопросы для самопроверки
- •8. Библиографический список
- •Министерство образования российской федерации
2.3. Неравновесное состояние p-n перехода
2.3.1. Прямосмещенный p-n переход
Если к p-области подсоединить положительный полюс внешнего источника напряжения, а к n-области - отрицательный, такое включение p-n перехода получило название прямого смещения p-n перехода.
В этом случае под действием внешнего электрического поля основные носители заряда начнут перемещаться в сторону p-n перехода. На рис.4 представлены схема включения p-n перехода в прямом направлении и диаграмма распределения потенциала вдоль p-n перехода.
Рис.4.
Схема включенияp-nперехода при прямом смещении и
потенциальная диаграммаp-nперехода
На рис.4 обозначено: Uпр - напряжение внешнего источника, приложенного к p-n переходу в прямом направлении (прямое смещение p-n перехода); Eвн - напряженность внешнего электрического поля; 1 - распределение потенциала вдоль p-n перехода в равновесном состоянии; 2 - распределение потенциала вдоль p-n перехода при прямом смещении; lo- ширина p-n перехода в равновесном состоянии;lпр- ширина p-n перехода при подаче прямого напряжения Uпр.
При подаче внешнего напряжения на p-n переход изменяется его ширина, что видно из потенциальной диаграммы рис.4. При этом ширина прямосмещенного p-n перехода находится из выражения:
,
где
.
Из потенциальной диаграммы рис.4 следует, что при прямом смещении высота потенциального барьера снижается и становится равной
.
Это приводит к резкому увеличению тока диффузии через переход: iD=iDp+iDn, так как все больше основных носителей заряда оказывается способными преодолеть меньший потенциальный барьер. В несимметричном p-n переходе ток диффузии создается в основном потоком дырок из p-области в n-область, так как встречный поток электронов мал и им можно пренебречь: (Nа=1018см-3)>>(Nд=1015см-3);iDp>>iDn. При этом в n-области существенно возрастает концентрация избыточных неосновных носителей заряда - дырок, перешедших из p-области. Это образование избыточной концентрации носителей заряда получило названиеинжекции.
Инжекциейназывается процесс нагнетания носителей
заряда в полупроводник, для которого
они являются неосновными носителями
заряда.
Область, инжектирующая носители заряда, называется эмиттером. Эта область сильно легирована примесями и имеет низкое удельное электрическое сопротивление. Область, в которую инжектируются неосновные для нее носители заряда, называетсябазой. База меньше легирована примесями и имеет большое значение удельного электрического сопротивления.
Энергетическая диаграмма p-n перехода при прямом смещении приведена на рис.5.
При прямом смещении уровень Ферми полупроводника в n-области смещается вверх относительно его положения в p-области на величину, равную eUпр. Соответственно, на эту же величину снижается высота энергетического барьера. При этом дрейфовая составляющая тока p-n перехода не изменяется, так как условия перехода неосновных носителей заряда через p-n переход остаются теми же, что и в равновесном состоянии, то есть переход неосновных носителей заряда происходит в ускоряющем электрическом поле p-n перехода. Из-за снижения высоты энергетического барьера количество переходов основных носителей заряда в тормозящем электрическом поле p-n перехода будет резко увеличиваться, а, соответственно, возрастает диффузионная составляющая тока перехода.
Рис.5.
Энергетическая диаграмма прямосмещенногоp-nперехода