
- •1.1.. Технологический процесс и его структура
- •1.2. Типы машиностроительного производства и методы его работы
- •1.3. Факторы влияющие на технологический процесс, исходные данные для проектирования, порядок проектирования технологических процессов механической обработки
- •1.4. Технологичность конструкции изделия, примеры анализа технологичности конструкции для изделий некоторых типов(корпусные детали, валы и оси, втулки)
- •1.5. Базирование и базы в машиностроении
- •1.6. Классификация баз по гост 21495 — 76
- •1.7. Понятие о черновой, чистовой, настроечной, проверочной и искусственной базах
- •1.8. Схемы базирования и установа заготовок на станках и в приспособлениях
- •1.9. Рекомендации по выбору черновых баз
- •1.10. Выбор чистовых баз. Принцип последовательности выбора баз
- •1.11. Точность механической обработки, виды погрешностей
- •Погрешность измерения.
- •Классификация погрешностей по причинам возникновения.
- •Основная и дополнительная погрешности.
- •Классификация погрешностей по свойствам
- •1.12. Факторы, влияющие на точность изделий при механической обработке
- •1.13. Методы и этапы механической обработки поверхностей. Показатели точности и шероховатости при различных этапах механической обработки
- •Посадка с натягом
- •Правила образования посадок
- •Нормирование параметров шероховатости поверхности
- •Пример 1
- •1.14. Анализ точности методом кривых распределения
- •8.3.1.2. Закон нормального распределения и его свойства
- •1.15. Анализ точности методом точечных диаграмм
- •1.16. Припуски на механическую обработку
- •10.2. Структура нормы времени на механическую обработку
- •1.19. Классификация технологических процессов механической обработки
- •1.20. Виды описания технологических процессов. Оформление технологической документации
- •12.1. Виды технологических документов
- •2.1. Базирование корпусных деталей при механической обработке, структура технологического процесса при обработке корпусных деталей.
- •2.2. Обработка плоских поверхностей корпусных деталей, методы, оборудование.
- •1 Методы черновой, получистрвдй и чистовой обработки плоскостей. Схемы методовл их технологическая характеристика.
- •2.3. Обработка основных отверстий в корпусных деталях, инструмент, оборудование.
- •2.4. Отделка основных отверстий в корпусных деталях
- •2.5. Обработка вспомогательных отверстий в корпусных деталях
- •2.6. Методы получения заготовок для ступенчатых валов, материалы, базирование, структура технологического процесса
- •2.7. Нарезание резьбы. Обработка шпоночных и шлицевых поверхностей при изготовлении валов.
- •2.8. Методы шлифование валов
- •Хонингование отверстий
- •2.9. Отделочная обработка наружных поверхностей валов
- •Полирование
- •2.10. Материалы, термическая обработка зубчатых колес, методы получения заготовок, базирование, структура технологического процесса при обработке цилиндрических зубчатых колес.
- •2.11. Методы нарез. Зубьев цил.Зубч. Колес. Накатывание зубьев.
- •2.12. Методы отделочной обработки зубьев цил.Зубч.Колес.
- •Раздел 3. Размерные цепи
- •3.1. Методы достижения заданной точности замыкающего звена в сборочной размерной цепи, их выбор.
- •5 Методов:
- •3.2. Расчет сборочных размерных цепей методом максимума-минимума. Основные расчетные зависимости. Прямая и обратная задачи расчета размерных цепей.
- •Расчет размерных цепей
- •Поверочный расчет
- •Проектный расчет
- •3.3. Расчет сборочных размерных цепей вероятностным методом. Основные расчетные зависимости.
- •3.4. Принципы составления размерной схемы и особенности расчета технологических размерных цепей (показать на примере).
- •Раздел 4.
- •4.1. Типовые компоновки и выбор типа приводов главного движения и подач станков с чпу и оц для обр-ки тел вращения.
- •4.2 Типовые компоновки и выбор типа приводов главного движения и подач многоцелевых станков (оц) для обработки корпусных деталей.
- •4.3 Типовые компоновки и назначение агрегатных станков (ас), особенности компоновок переналаж-х ас.
- •4.4. Типовые компоновки автоматических линий из агрег-ых станков, области их применения.
- •Применение авт. Линий
- •4.5. Компоновки роторных и роторно-конвеерных авт-ких линий. Области их эффективного применения.
- •4.6.(4.7.) Типовые компоновки гибких произ-ых модулей (гпм) для обработки тел вращения.
- •4.7. Типовые компоновки гпм для обработки корпусных деталей.
- •Раздел 5.
- •5.1. Современные инструм-е мат-лы и их выбор для различных технологических условий.
- •1.Инструментальные углеродистые и легированные стали.
- •4. Минералокирамичсские материалы.
- •5.2. Принципы построения систем режущих и вспом-ных инструментов для токарных станков с чпу.
- •5.3. Принципы построения систем режущих и вспом-ных инструментов для многоцел-х станков и оц для обр-ки корпусных деталей.
- •Раздел 6.
- •6.1. Системы станочных приспособлений, их основные хар-ки и область использования.
- •По целевому назначению приспособления делят на следующие группы.
- •6.2. Основные элементы приспособлений. Стандартизация приспособлений и их элементов.
- •6.3. Методика проектирования приспособлений (исходные данные, последовательность этапов проектирования, выполняемые расчёты).
- •6.4. Методика расчёта и выбора механизированных приводов присп-ний (на примере пневматических и гидравлических).
- •Раздел 7. Автоматизация технологического проектирования.
- •7.1. Сущность, характеристика и область применения основных методов автоматизированного проектирования тп.
- •7.2. Разновидности языков описания деталей при технологическом проектировании, их достоинства и недостатки с точки зрения пользователей сапр тп. Примеры этих языков.
- •2) Дополнительный код – 8 позиций (для каждого в отдельности).
- •7.3. Базы данных в технологическом проектировании. Краткая характеристика разновидностей моделей данных.
- •7.4. Особенности автоматизации технологического проектирования в условиях крупносерийного и массового производства. Состав задач, решаемых в таких сапр тп.
- •7.5. Состав ограничений, формирующих область возможных значений при оптимизации режимов резания, например при токарной обработке. Метод определения оптимальных режимов резания в сапр тп.
- •Раздел 8. Пути и методы достижения высокого качества и эффективности машиностроительного производства.
- •8.1. Основные условия, обеспечивающие экономически эффективное использование станков с чпу, гпм и гпс.
- •8.2. Основные факторы, обеспечивающие достижение высокой эффективности применения агрегатных станков и автоматических линий.
- •8.3. Понятие о системах активного контроля адаптивного управления. Основные условия их эффективного использования.
- •26.2 Понятие о системах активного контроля адаптивного управления. Основные условия их
2.5. Обработка вспомогательных отверстий в корпусных деталях
Вспомогательными отверстиями являются крепежные и другие мелкие отверстия, например, под пробки маслоуказателей, для подачи смазки, установки штифтов и пр. Эти отверстия обрабатываются на вертикально-сверлильных (рис. 2.31), радиально-сверлильных (рис. 2.32), горизонтально-расточных (рис. 2.18) или агрегатных станках (рис. 2.23). При обработке отверстий используют различный инструмент, которым выполняют сверление, зенкерование, развертывание, нарезание резьбы, зенковку и цековку (рис.2.33).
Рис. 2.33 Зенковка и цековка
Отверстия в заготовках массой до 30 кг обычно обрабатывают на вертикально-сверлильных станках. При большей массе заготовок используют радиально-сверлильные или горизонтально-расточные станки. При единичном производстве сверление отверстий выполняют по разметке. В этом случае точность линейных размеров составляет 0,5 — 1 мм.
Для уменьшения отклонения оси отверстия от заданного положения сверление выполняют за два или три перехода. При этом отверстие центруют или засверливают сверлом, диаметр которого в 2 - 3 раза меньше отверстия. Отверстия диаметром более 25 - 30 мм после сверления зенкеруют или растачивают.
Обработку торцов выполняют зенковками, фрезерованием или подрезными резцами с осевой подачей (рис. 2.19, в, III)
Диаметр отверстий под резьбу делают на 0,04 ... 0,1 мм больше внутреннего диаметра резьбы, тем самым учитывают подъем витков, возникающий при нарезании. Рекомендуемые диаметры сверл под резьбы с различным шагом и диаметром приводятся в нормативных таблицах.
Перед нарезанием резьбы в отверстиях снимают фаску с помощью конических зенковок, резцов или сверл большого диаметра. Фаску снимают под углом 90° до наружного диаметра резьбы. Нарезание резьбы выполняют машинными метчиками.
Резьбу с шагом до 3 мм нарезают за один рабочий ход, резьбу с большим шагом нарезают комплектом метчиков за 2 - 3 рабочих хода. Резьбу нарезают с принудительной осевой подачей инструмента, равной шагу резьбы. Для предохранения метчиков от поломки применяют динамометрические патроны, отрегулированные на допустимое предельное значение крутящего момента.
В условиях серийного производства мелкие отверстия сверлят с применением кондукторов. Направляющими элементами для инструмента в кондуктоpax являются кондукторные втулки. Точность расположения отверстий при обработке по кондукторам составляет 0,1 — 0,2 мм.
В серийном производстве вертикально-сверлильные станки оснащаются многошпиндельными переналаживаемыми головками с регулируемым межосевым расстоянием. В конструкции головки, представленной на рис. 2.34 передача крутящего момента от ведущего шпинделя к ведомым шпинделям с патронами для крепления сверл осуществляется карданными валами.
Для сокращения вспомогательного времени на смену инструмента используются вертикально-сверлильные станки с револьверной головкой (рис.2.35).
В крупносерийном и массовом производстве обработку мелких отверстий выполняют на многошпиндельных агрегатных станках различной компоновки (рис. 2.23).
Рис. 2.35 Вертикально-сверлильный станок с револьверной головкой
Рис. 2.23 Типовые компоновки агрегатных станков а – с неподвижным столом; б – с поворотным барабаном; в, г – с поворотным столом