
- •1878Г ф.Энгельс «Диалектика природы»
- •4.Происхождение жизни: гипотеза панспермии и абиогенного происхождения жизни. Главные этапы возникновения и развития жизни.
- •5.Типы клеточной организации. Строение про- и эукариотических клеток.
- •6.Гипотезы происхождения эукариотических клеток (симбиотическая, инвагинационная).
- •7.Иерархические уровни организации жизни. Проявления главных свойств жизни на различных уровнях её организации.
- •Уровни организации жизни
- •1.8. Проявление главных свойств жизни
- •На разных уровнях ее организации
- •Модель ступенчатой горки.
- •8.Клетка - элементарная биологическая система. Клеточная теория т.Шванна и м.Шлейдена, история, её основные положения. Современное состояние клеточной теории. Значение клеточной теории.
- •Клеточная теория
- •Современная клеточная теория
- •Клетка — элементарная единица живого
- •2.1. Клеточная теория
- •9.Биологическая мембрана, молекулярная организация и функции. Транспорт веществ через мембрану (модели транспорта).
- •10.Ядро. Строение и функции.
- •11.Цитоплазма. Органеллы общего значения и специальные, их строение и функции.
- •12.Поток информации, энергии и вещества в клетке.
- •2.3.4. Внутриклеточный поток энергии
- •2.3.5. Внутриклеточный поток веществ
- •13.Жизненный и митотический (пролиферативный) цикл клетки. Фазы митотического цикла, их характеристика и значение.
- •15.Структура днк, её свойства и функции. Репликация днк.
- •16.Классификация нуклеотидных последовательностей в геноме эукариот (уникальные и повторяющиеся последовательности).
- •17.Мутации, их классификации и механизмы возникновения. Медицинское и эволюционное значение.
- •18.Репарация как механизм поддержания генетического гомеостаза. Виды репарации. Мутации, связанные с нарушением репарации и их роль в патологии.
- •19.Ген, его свойства. Генетический код, его свойства. Структура и виды рнк. Процессинг, сплайсинг. Роль рнк в процессе реализации наследственной информации.
- •20.Рибосомный цикл синтеза белка (инициация, элонгация, терминация). Посттрансляционные преобразования белков.
- •21.Взаимосвязь между геном и признаком. Гипотеза «один ген - один фермент», ее современная трактовка: «один ген – одна полипептидная цепь»
- •22.Ген как единица изменчивости. Генные мутации и их классификация. Причины и механизмы возникновения генных мутаций. Последствия генных мутаций.
- •1.Мутации по типу замены азотистых оснований.
- •2.Мутации со сдвигом рамки считывания.
- •3.Мутации по типу инверсии нуклеотидных последовательностей в гене.
- •25.Геном, кариотип как видовые характеристики. Характеристика кариотипа человека в норме.
- •26.Геном как эволюционно сложившаяся система генов. Функциональная классификация генов (структурные, регуляторные). Регуляция экспрессии генов у прокариот и эукариот.
- •27.Геномные мутации, причины и механизмы их возникновения. Классификация и значение геномных мутаций. С 152-154.
- •28.Эволюция генома. Роль ампфликации генов, хромосомных перестроек, полиплоидизации, подвижных генетических элементов, горизонтального переноса информации в эволюции генома. Секвенирование генома.
- •29.Размножение. Способы и формы размножения организмов. Половое размножение, его эволюционное значение.
- •30.Гаметогенез. Мейоз. Цитологическая и цитогенетическая характеристика. Особенности ово- и сперматогенеза у человека.
- •31.Морфология половых клеток.
- •32.Оплодотворение, его фазы, биологическая сущность. Партеногенез. Типы определения пола.
- •33.Предмет, задачи, методы генетики. История развития генетики. Роль отечественных ученых (н. И. Вавилов, н. К. Кольцов, а. С. Серебровский, с. С. Четвериков) в развитии генетики.
- •34.Понятия: генотип, фенотип, признак. Аллельные и неаллельные гены, гомозиготные и гетерозиготные организмы, понятие гемизиготности.
- •35.Закономерности наследования при моногибридном скрещивании.
- •36.Дигибридное и полигибридное скрещивание. Закон независимого комбинирования генов и его цитологические основы. Общая формула расщепления при независимом наследовании.
- •37.Множественные аллели. Наследование групп крови человека системы аво.
- •38.Взаимодействие неаллельных генов: комплементарность, эпистаз, полимерия, модифицирующее действие.
- •39.Хромосомная теория наследственности. Сцепление генов. Группы сцепления. Кроссинговер как механизм, определяющий нарушения сцепления генов.
- •Основные положения хромосомной теории наследственности
- •Сцепленное наследование
- •40.Наследование. Типы наследования. Особенности аутосомного, х-сцепленного и голандрического типов наследования. Полигенное наследование.
- •41.Количественная и качественная специфика проявления генов в признаках: пенетрантность, экспрессивность, плейотропность, генокопии.
- •42.Изменчивость. Формы изменчивости: модификационная и генотипическая, их значение в онтогенезе и эволюции.
- •43.Фенотипическая изменчивость и её виды. Модификации и их характеристики. Норма реакции признака. Фенокопии. Адаптивный характер модификаций.
- •Норма реакции
- •45.Комбинативная изменчивость, её механизмы. Значение комбинативной изменчивости в обеспечении генотипического разнообразия людей.
- •46.Генные болезни человека, механизмы их возникновения и проявления. Примеры. С 258-261
- •47.Хромосомные болезни человека, механизмы их возникновения и проявления. Примеры.
- •45,Х0 синдром Шеришевкого-Тернера
- •Аномалии числа хромосом
- •Болезни, обусловленные нарушением числа аутосом (неполовых) хромосом
- •Болезни, связанные с нарушением числа половых хромосом
- •Болезни, причиной которых является полиплоидия
- •Нарушения структуры хромосом
- •48.Геномные болезни человека, механизмы их возникновения и проявления. Примеры.
- •45,Х0 синдром Шеришевкого-Тернера
- •49.Болезни человека с наследственной предрасположенностью, механизмы их возникновения и проявления. Примеры. С 262-263.
- •3.Биохимические методы.
- •4. Молекулярно-генетические методы.
- •51.Популяционно-статистический метод в генетике человека. Закон Харди-Вайнберга и его применение для популяций человека.
- •Практическое значение закона Харди-Вайнберга
- •52.Генеалогический метод изучения генетики человека. Особенности наследования признаков в родословных с аутосомно-доминантным, аутосомно-рецессивным, х-сцепленным и у-сцепленным типах наследования.
- •53.Близнецовый метод изучения генетики человека, возможности метода. Определение соотносительной роли наследственности и среды в развитии признаков и патологических состояний человека.
- •54.Цитогенетический метод изучения генетики человека. Денверская и Парижская классификация хромосом. Возможности идентификации хромосом человека.
- •55.Медико-генетические аспекты брака. Близкородственные браки. Медико-генетическое консультирование
- •56.Пренатальная диагностика наследственных заболеваний человека. Методы пренатальной диагоностики и их возможности.
- •61.Провизорные органы зародышей позвоночных (амнион, хорион, аллантоис, желточный мешок, плацента), их функции.
- •62.Особенности эмбрионального развития человека.
- •63.Постнатальный онтогенез и его периоды. Основные процессы: рост, формирование дефинитивных структур, половое созревание, репродукция, старение.
- •Возрастная периодизация жизни человека (1965).
- •Изменение длины тела.
- •64.Старение как закономерный этап онтогенеза. Проявления старения на молекулярно-генетическом, клеточном, тканевом, органном и организменном уровнях.
- •Признаки старения.
- •Гипотезы старения.
- •Признаки старения.
- •Гипотезы старения.
- •8.5. Старость и старение.
- •Смерть как биологическое явление
- •8.5.1. Изменение органов и систем органов в процессе старения
- •8.5.2. Проявление старения на молекулярном,
- •Субклеточном и клеточном уровнях
- •8.6. Зависимость проявления старения
- •От генотипа, условий и образа жизни
- •8.6.1. Генетика старения
- •У различных видов млекопитающих животных
- •8.6.2. Влияние на процесс старения условий жизни
- •8.6.3. Влияние на процесс старения образа жизни
- •8.6.4. Влияние на процесс старения эндоэкологической ситуации
- •8.7. Гипотезы,
- •Объясняющие механизмы старения
- •67.Основные концепции в биологии развития (преформизм, эпигенез).
- •Классификация терминов (Вена, 1967 год).
- •История трансплантологии в России.
- •93.Индивидуальное и историческое развитие. Закон зародышевого сходства. Биогенетический закон. Рекапитуляция.
- •Ценогенез
- •Филэмбриогенез
- •Эволюции органов
- •13.3.1. Дифференциация и интеграция
- •В эволюции органов
- •13.3.2. Закономерности морфофункциональных преобразований органов
- •13.3.3. Возникновение и исчезновение
- •Биологических структур в филогенезе
- •13.3.4. Атавистические пороки развития
- •13.3.5. Аллогенные аномалии и пороки развития
- •И индивидуальном развитии.
- •Соотносительные преобразования органов
- •96.Филогенез наружных покровов хордовых животных. Онтофилогенетические пороки развития наружных покровов у человека.
- •97.Филогенез пищеварительной системы хордовых. Онтофилогенетические пороки пищеварительной системы у человека.
- •14.3.1. Ротовая полость
- •14.3.2. Глотка
- •14.3.3. Средняя и задняя кишка
- •98. Филогенез дыхательной системы хордовых. Онтофилогенетические пороки дыхательной системы у человека.
- •99.Филогенез кровеносной системы хордовых животных. Филогенез артериальных жаберных дуг. Онтофилогенетические пороки сердца и кровеносных сосудов у человека.
- •14.4.1. Эволюция общего плана строения
- •Кровеносной системы хордовых
- •14.4.2. Филогенез артериальных жаберных дуг
- •14.5.1. Эволюция почки
- •14.5.2. Эволюция половых желез
- •14.5.3. Эволюция мочеполовых протоков
- •101.Филогенез нервной системы позвоночных. Этапы эволюции головного мозга позвоночных. Онтофилогенетические пороки нервной системы у человека.
- •102.Филогенез эндокринной системы. Гормоны. Эволюционные преобразования желез внутренней секреции у хордовых животных. Онтофилогенетические пороки эндокринной системы у человека.
- •14.6.2.1. Гормоны
- •14.6.2.2. Железы внутренней секреции
- •104.Сравнительный обзор скелета позвоночных животных. Скелет головы. Осевой скелет. Скелет конечностей. Основные тенденции прогрессивной эволюции. Врожденные пороки развития скелета у человека.
- •14.2.1. Скелет
- •14.2.1.1. Осевой скелет
- •14.2.1.2. Скелет головы
- •14.2.1.3. Скелет конечностей
- •14.2.2. Мышечная система
- •14.2.2.1. Висцеральная мускулатура
- •14.2.2.2. Соматическая мускулатура
- •106.Биологические предпосылки прогрессивного развития гоминид. Антропогенез. Характеристика основных этапов.
- •108.Внутривидовая дифференциация человечества. Расы и расогенез. Видовое единство человечества. Современная классификация и распространение человеческих рас. Популяционная концепция рас.
- •15.4.1. Расы и расогенез
- •109.Экологические факторы в антропогенезе. Адаптивные экологические типы человека, их соотношение с расами и происхождение. Роль социальной среды в дальнейшей дифференциации человечества.
- •15.4.3. Происхождение адаптивных экологических типов
- •110.Биосфера как естественно - историческая система. Современные концепции биосферы: биохимическая, биогеноценологическая, термодинамическая, геофизическая, кибернетическая.
- •112.Живое вещество биосферы. Количественная и качественная характеристика. Роль в природе планеты.
- •113.Эволюция биосферы. Ресурсы биосферы.
- •114.Международные и национальные программы по изучению биосферы.
- •Международные организации по охране природы при оон.
- •115.Вклад отечественных ученых в развитие учения о биосфере. (в. В. Докучаев, в. И. Вернадский, в. Н. Сукачев).
- •Классификация паразитизма
- •И паразитов
- •125.Паразитоценоз. Взаимоотношения в системе паразит-хозяин на уровне отдельной особи. Адаптации к паразитическому образу жизни. Факторы действия паразита на организм хозяина.
- •126.Циклы развития паразитов. Чередование поколений и феномен смены хозяев. Основные, резервуарные и промежуточные хозяева. Расселение паразитов и проблемы поиска хозяина.
- •128.Трансмиссивные болезни (облигатные и факультативные). Антропонозы и зоонозы. Биологические принципы борьбы с паразитарными заболеваниями. Учение к.И.Скрябина о девастации.
- •129.Тип простейшие. Классификация. Характерные черты организации. Значение для медицины.
- •19.1.1. Класс Саркодовые Sarcodina
- •19.1.2. Класс Жгутиковые Flagellata
- •19.1.3. Класс Инфузории Infusoria
- •19.1.4. Класс Споровики Sporozoa
- •131.Комменсальные и условно-патогенные простейшие: Амеба кишечная, Амеба ротовая.
- •132.Трихомонады. Систематика, морфология, географическое распространение, цикл развития, пути заражения, патогенное действие, обоснование методов лабораторной диагностики, меры профилактики.
- •133.Трипаносомы. Систематика, морфология, географическое распространение, цикл развития, пути заражения, патогенное действие, обоснование методов лабораторной диагностики, меры профилактики
- •134.Лямблия кишечная. Систематика, морфология, географическое распространение, цикл развития, пути заражения, патогенное действие, обоснование методов лабораторной диагностики, меры профилактики.
- •135.Лейшмании. Систематика, морфология, географическое распространение, цикл развития, пути заражения, патогенное действие, обоснование методов лабораторной диагностики, меры профилактики.
- •139.Балантидий кишечный. Систематическое положение, цикл развития, географическое распространение, пути заражения, патогенное действие, методы лабораторной диагностики, меры профилактики.
- •140.Тип плоские черви. Классификация. Характерные черты организации, медицинское значение.
- •150.Цистицеркоз. Пути заражения. Обоснование методов лабораторной диагностики. Меры профилактики.
- •155.Тип круглые черви. Классификация. Характерные черты организации. Медицинское значение.
- •Биология наиболее распространенных филярий, паразитов человека
- •167.Класс Паукообразные. Классификация. Характерные черты организации. Медицинское значение.
- •Трахейнодышащие.
- •Вирусные заболевания.
- •169.Класс Насекомые. Классификация. Характерные черты организации. Отряды, имеющие эпидемиологическое значение. Насекомые-возбудители миазов.
- •170.Комнатная муха, муха це-це, вольфартова муха. Систематическое положение, морфология, географическое распространение, развитие, эпидемиологическое значение, меры борьбы и профилактики.
- •171.Вши, блохи. Систематическое положение, морфология, географическое распространение, развитие, эпидемиологическое значение, меры борьбы и профилактики.
- •172.Комары. Систематическое положение, морфология, географическое распространение, развитие, медицинское значение, меры борьбы и профилактики.
- •173.Мошки, мокрецы. Систематическое положение, морфология, географическое распространение, развитие, медицинское значение, меры борьбы и профилактики.
- •174.Москиты. Систематическое положение, морфология, географическое распространение, развитие, медицинское значение, меры борьбы и профилактики.
- •175. Компоненты гнуса.
- •177.Роль отечественных ученых в развитии общей и медицинской паразитологии (в. А. Догель, в. Н. Беклемишев, е. Н. Павловский, к. И. Скрябин).
- •Беклемишев, Владимир Николаевич
39.Хромосомная теория наследственности. Сцепление генов. Группы сцепления. Кроссинговер как механизм, определяющий нарушения сцепления генов.
Основные положения хромосомной теории наследственности
Анализ явлений сцепленного наследования, кроссинговера, сравнение генетической и цитологической карт позволяют сформулировать основные положения хромосомной теории наследственности:
Гены локализованы в хромосомах. При этом различные хромосомы содержат неодинаковое число генов. Кроме того, набор генов каждой из негомологичных хромосом уникален.
Аллельные гены занимают одинаковые локусы в гомологичных хромосомах.
Гены расположены в хромосоме в линейной последовательности.
Гены одной хромосомы образуют группу сцепления, то есть наследуются преимущественно сцепленно (совместно), благодаря чему происходит сцепленное наследование некоторых признаков. Число групп сцепления равно гаплоидному числу хромосом данного вида (у гомогаметного пола) или больше на 1 (у гетерогаметного пола).
Сцепление нарушается в результате кроссинговера, частота которого прямо пропорциональна расстоянию между генами в хромосоме (поэтому сила сцепления находится в обратной зависимости от расстояния между генами).
Каждый биологический вид характеризуется определенным набором хромосом — кариотипом.
Сцепленное наследование
Независимое комбинирование признаков (третий закон Менделя) осуществляется при условии, что гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом. Следовательно, у каждого организма число генов, способных независимо комбинироваться в мейозе, ограничено числом хромосом. Однако в организме число генов значительно превышает количество хромосом. Например, у кукурузы до эры молекулярной биологии было изучено более 500 генов, у мухи дрозофилы — более 1 тыс., а у человека — около 2 тыс. генов, тогда как хромосом у них 10, 4 и 23 пары соответственно. То, что число генов у высших организмов составляет несколько тысяч, было ясно уже У. Сэттону в начале XX века. Это дало основание предположить, что в каждой хромосоме локализовано множество генов. Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются вместе.
Совместное наследование генов Т. Морган предложил назвать сцепленным наследованием. Число групп сцепления соответствует гаплоидному числу хромосом, поскольку группу сцепления составляют две гомологичные хромосомы, в которых локализованы одинаковые гены. (У особей гетерогаметного пола, например, у самцов млекопитающих, групп сцепления на самом деле на одну больше, так как X- и У-хромосомы содержат разные гены и представляют собой две разные группы сцепления. Таким образом, у женщин 23 группы сцепления, а у мужчин — 24).
Способ наследования сцепленных генов отличается от наследования генов, локализованных в разных парах гомологичных хромосом. Так, если при независимом комбинировании дигетерозиготная особь образует четыре типа гамет (АВ, Ab, аВ и ab) в равных количествах, то при сцепленном наследовании (в отсутствие кроссинговера) такая же дигетерозигота образует только два типа гамет: (АВ и ab) тоже в равных количествах. Последние повторяют комбинацию генов в хромосоме родителя.
Было установлено, однако, что кроме обычных (некроссоверных) гамет возникают и другие (кроссоверные) гаметы с новыми комбинациями генов — Ab и аВ, отличающимися от комбинаций генов в хромосомах родителя. Причиной возникновения таких гамет является обмен участками гомологичных хромосом, или кроссинговер.
Кроссинговер происходит в профазе I мейоза во время конъюгации гомологичных хромосом. В это время части двух хромосом могут перекрещиваться и обмениваться своими участками. В результате возникают качественно новые хромосомы, содержащие участки (гены) как материнских, так и отцовских хромосом. Особи, которые получаются из таких гамет с новым сочетанием аллелей, получили название кроссинговерных или рекомбинантных.
Частота (процент) перекреста между двумя генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Кроссинговер между двумя генами происходит тем реже, чем ближе друг к другу они расположены. По мере увеличения расстояния между генами все более возрастает вероятность того, что кроссинговер разведет их по двум разным гомологичным хромосомам.
Расстояние между генами характеризует силу их сцепления. Имеются гены с высоким процентом сцепления и такие, где сцепление почти не обнаруживается. Однако при сцепленном наследовании максимальная частота кроссинговера не превышает 50 %. Если же она выше, то наблюдается свободное комбинирование между парами аллелей, не отличимое от независимого наследования.
Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым повышать наследственную изменчивость, которая дает широкие возможности адаптации организма в различных условиях среды. Человек специально проводит гибридизацию с целью получения необходимых вариантов комбинаций для использования в селекционной работе.
Кроссинговер.Этот процесс происходит в профазе Iмейоза в то время, когда гомологичные хромосомы тесно сближены в результате конъюгации и образуют биваленты. В ходе кроссинговера осуществляется обмен соответствующими участками между взаимно переплетающимися хроматидами гомологичных хромосом (рис. 3.72).Этот процесс обеспечивает перекомбинацию отцовских и материнских аллелей генов в каждой группе сцепления. В разных предшественниках гамет Кроссинговер происходит в различных участках хромосом, в результате чего образуется большое разнообразие сочетаний родительских аллелей в хромосомах.
Рис. 3.72.Кроссинговер как источник генетического разнообразия гамет:
I — оплодотворение родительских гамета и б с образованием зиготыв; II — гаметогенез в организме, развившемся из зиготыв;г — кроссинговер, происходящий между гомологами в профазеI; д — клетки, образовавшиеся после 1-го мейотического деления;е, ж — клетки, образовавшиеся после 2-го деления мейоза (е —некроссоверные гаметы с исходными родительскими хромосомами;ж — кроссоверные гаметы с перекомбинацией наследственного материала в гомологичных хромосомах)
Понятно, что кроссинговер как механизм рекомбинации эффективен лишь в том случае, когда соответствующие гены отцовской и материнской хромосом представлены разными аллелями. Абсолютно идентичные группы сцепления при кроссинговере не дают новых сочетаний аллелей.
Кроссинговер происходит не только в предшественницах половых клеток при мейозе. Он наблюдается также в соматических клетках при митозе. Соматический кроссинговер описан у дрозофилы, у некоторых видов плесеней. Он осуществляется в ходе митоза между гомологичными хромосомами, однако его частота в 10 000 раз меньше частоты мейотического кроссинговера, от механизма которого он ничем не отличается. В результате митотического кроссинговера появляются клоны соматических клеток, различающихся по содержанию в них аллелей отдельных генов. Если в генотипе зиготы данный ген представлен двумя разными аллелями, то в результате соматического кроссинговера могут появиться клетки с одинаковыми либо отцовскими, либо материнскими аллелями данного гена (рис. 3.73).
Рис. 3.73.Кроссинговер в соматических клетках:
1 — соматическая клетка, в гомологичных хромосомах которой ген А представлен двумя разными аллелями (А и а);2 — кроссинговер; 3 — результат обмена соответствующими участками между гомологичяыми хромосомами; 4 — расположение гомологов в плоскости экватора веретена деления в метафазе митоза (два варианта); 5 — образование дочерних клеток; 6 — образование гетерозитотиых по гену А клеток, сходных с материнской клеткой по набору аллелей (Аа); 7 — образование гомозиготных по гену А клеток, отличающихся от материнской клетки по набору аллелей (АА или аа)