Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Математика Сизов 2011

.pdf
Скачиваний:
210
Добавлен:
15.02.2015
Размер:
4.26 Mб
Скачать

y

5

3y

 

y

 

xy

4

4 y

 

xy

4

 

;

y 5 0 2 4,

 

 

 

 

 

 

 

 

y 6 4 y 4 y 4 xy 5 5y 4 xy 5 ;

y 6 0 0,

y 7 5y 5 y 5 xy 6 6 y 5 xy 6 ;

y 7 0 2 4 6.

Видна закономерность:

y n (n 1) y n 2 xy n 1 ;

y 2n (0) 0; y 2n 1 (0) ( 1)n 2 4 6 2n.

Подставим все значения коэффициентов в ряд: y(x) 0 11!x 20!x2 32!x3 40!x4 25!4 x5 60!x6 2 74! 6 x7

( 1)n 2 4 6 2n x(2n 1)

(2n 1)!

Т.к. четные члены ряда стали равными нулю (выбыли из ряда), нумерацию членов ряда n=0,1,2,…заменим на новую k=0,1,2,…

Выполним преобразования:

y(x) x

 

2

 

 

x3

2 4

 

x5

 

2 4 6

 

x7

1 2 3

1 2 3 4 5

1 2

3 4 5 6 7

 

 

 

 

( 1)k

 

2 4 6 2k

 

x2k 1

 

1 2 3 2k(2k 1)

 

 

 

 

 

 

 

 

y(x)

k 0

x

 

x3

 

 

 

 

x5

 

x7

 

 

( 1)k

x2k 1

=

1 3

1

3 5

1 3 5 7

1 3 5 (2k 1)

 

 

 

 

 

 

 

k

 

 

 

 

 

x2k 1

 

 

 

 

 

 

 

 

 

 

1

 

.

 

 

 

 

 

 

 

1 3 5 2k 1

 

 

 

 

 

 

 

Определим радиус сходимости этого ряда:

 

 

ak

 

 

 

 

 

 

1

 

 

 

;

ak 1

 

1

 

.

1 3

5 (2k 1)

1 3 5

(2k 1)(2k

3)

 

 

 

 

 

R lim

 

ak

 

lim

 

1 3 5 (2k 1)(2k 3)

 

lim(2k 3)

 

 

 

 

ak 1

 

1 3 5 (2k 1)

k

 

n

 

 

k

Полученное решение ДУ справедливо для всех x .

Замечание. При решении ДУ с помощью рядов не всегда удается получить закономерность изменения коэффициентов ряда Тейлора. И тогда вывести формулу общего члена ряда разложения, а, значит, и представить точное решение ДУ не представляется возможным. В этом случае нужно представить приближенное решение ДУ в виде первых пяти-шести членов разложения функции.

291

18.3. Ряды Фурье и интегралы Фурье

18.3.1. Краткие сведения из теории

Если на интервале [- , ] функция f(t) удовлетворяет условию Дирихле( функция непрерывна с конечным числом экстремумов или имеет конечное число точек разрыва первого рода ), то ряд Фурье этой

функции сходится в точках непрерывности к самой функции

f(t), а

в точках разрыва

первого

рода - к полусумме

 

левого

и

правого

пределов функции

f(t).

 

 

 

 

 

 

 

 

 

Ряд Фурье имеет вид:

 

 

 

 

 

 

 

 

 

 

 

a0

 

 

 

 

 

 

 

 

 

 

 

f (t)

(an cos nt bn sin nt) ,

 

 

 

где

n=1,2,3,…

 

 

 

 

 

 

2

n 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

1

 

 

1

 

 

a0

 

f (t)dt ;

an

 

f (t)cos ntdt ; bn

 

 

 

f (t)sin ntdt .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Если функция f(t) периодична с периодом 2 , удовлетворяет условию Дирихле на этом периоде, то ряд Фурье данной функции сходится к ней для любого t. То же самое относится и к случаям, если функция f(t).периодична с периодом T или 2l. Соответствующие формулы имеют вид:

 

 

 

 

 

 

 

 

 

 

a0

 

 

 

 

 

 

 

 

 

2 nt b sin

2 nt)

 

 

 

 

 

 

 

 

 

 

 

 

 

f (t)

 

 

 

(a

n

 

cos

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

T

n

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

 

 

 

n 1

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

 

 

 

 

 

 

 

 

 

 

 

2

2

 

2

 

 

 

 

2

 

2

 

2

 

где

a

0

 

T

 

f (t)dt ;

a

n

 

T

 

 

f (t)cos

T

ntdt ;b

 

 

T

 

f (t)sin

T

ntdt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

T

 

 

n

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a0

 

 

 

 

 

 

 

 

nt bn sin

nt) ,

 

 

 

 

 

 

 

 

 

 

 

 

 

f (t)

 

(an cos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

n 1

 

 

 

 

 

 

l

 

 

 

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 l

 

 

 

 

 

 

 

 

 

 

 

1 l

 

 

 

 

 

 

 

1 l

 

 

 

где

 

a

 

 

f (t)dt ;

 

 

 

a

 

 

 

f (t)cos ntdt ; b

 

 

f (t)sin

ntdt .

 

 

 

0

 

 

l

 

 

 

 

 

 

 

 

 

n

 

 

l

 

 

l

 

n

 

 

l

 

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l

 

 

 

 

f(t)

 

 

 

l

 

 

 

 

 

 

 

 

 

l

 

 

 

 

 

Если функция

четная, то

bn 0;

если f(t) нечетная, то

a0 an 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

и ряд Фурье упрощается.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Если

 

 

 

 

f(t) задана на полуинтервале, то ее можно разложить в

ряд Фурье по косинусам или синусам, продлив функцию соответственно четным или нечетным образом на весь период.

Интегралом Фурье представляется функция f t непериодическая, к которой предъявляются два условия:

292

1) должна быть кусочно-гладкая, т.е. должна быть на некотором интервале непрерывной и иметь непрерывную производную во всех точках этого интервала , за исключением, быть может, конечного числа точек, в которых функция имеет разрыв 1 рода (это аналог условия Дирихле);

2)должна быть абсолютно интегрируема на всей числовой

 

 

f t

 

 

оси, т.е. должен быть сходящимся

 

 

dt A . В

 

 

электротехнике это означает одиночный импульс тока или напряжения, имеющий начало и конец.

 

Тогда

функция

f (t)

представляется

несколькими видами

интеграла Фурье:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а)

f (t) A( )cos

t B( )sin

 

t d ,

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

1

 

 

 

 

 

 

 

где

A( )

 

 

 

f ( )cos d

, B( )

 

 

 

 

f ( )sin d .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Здесь

f ( ) и f (t)

– одна и та же функция с аргументами τ и

t.

В частных случаях

f (t)

может быть четной и нечетной.

 

 

Если f (t)

– чётная, то B( ) 0,

и

тогда

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

f (t) A( )cos td ,

 

где

A( )

f ( ) cos d .

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

Иногда вводят функцию F( )

f ( )cos d , тогда

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (t)

F( )cos td .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

косинуспреобразованием

В этом случае функцию F( )

называют

 

Фурье.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Если f (t)

– -нечетная, то A( ) 0

и тогда

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

f (t) B( )sin td ;

 

 

B( )

 

f ( )sin d .

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

Если ввести функцию

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( )

 

f ( )sin d - синус-преобразование Фурье,

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

293

 

 

 

2

 

 

 

 

 

то

f (t)

 

 

( )sin td . .

 

 

 

 

 

 

 

 

 

0

 

 

 

 

b) Второй вид интеграла Фурье :

 

 

 

1

 

 

 

 

 

 

 

f (t)

 

d

f ( ) cos (t )d .

 

 

 

 

 

 

 

0

 

 

 

 

 

 

с) Третий вид интеграла Фурье – в комплексной форме – здесь

не рассматривается.

 

 

 

 

Представить функцию f (t)

интегралом Фурье значит:

 

Вид а)

 

найти функции

A( ) и B( ) или F( )

или ( )

и подставить в соответствующую формулу интеграла Фурье.

 

 

Вид

 

 

 

 

b)

-–

посчитать внутренний

интеграл

 

 

 

 

 

 

 

 

 

 

f ( )cos (t )d

и подставить в формулу интеграла Фурье.

18.3.2. Решение типовых примеров с использованием рядов и интеграла Фурье

Пример 13. Разложить функцию f (t) 2t в ряд Фурье на интервале

(-π, π).

Решение. Продолжим функцию периодическим образом с периодом 2 (рисунок 18.3).

f(t) π/2

 

 

π

 

 

 

 

 

-π/2

t

 

t

 

 

Рисунок 18.3

 

Функция f (t)

 

нечетная, поэтому коэффициенты a0

an 0 .

 

 

2

 

 

 

294

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U t;

 

dV sin ntdt

 

 

 

 

bn

1

 

 

 

f t sin ntdt

2

 

t

sin ntdt

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

dU dt;

V

cos nt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 2

 

 

 

 

 

 

n

 

 

 

 

 

 

2

 

t

 

 

 

 

1

 

 

 

 

 

 

 

2

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos nt

 

 

cos ntdt

 

 

 

 

 

cos n

 

 

 

sin nt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

n

 

 

0

 

n

 

 

 

 

 

 

 

 

n

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

2 cos n

2 1 1 n

2 1 n 1 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

n

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ряд Фурье:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

2 sin nt

2sin t

2sin 2t

 

2sin 3t

2sin 4t .

 

 

 

 

 

 

( 1)n 1

 

 

 

 

 

2

 

 

2

 

3

 

 

 

 

 

 

n 1

 

 

 

n

 

 

 

 

 

1

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 14 . Разложить

в

ряд Фурье

функцию

f (t)

t2

1

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

на интервале ( , ).

Решение. Продолжим функцию периодическим образом с периодом (рис. 18.4).

f(t)

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-3

 

-2

-

1

 

 

 

 

 

 

2

 

3

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t2

 

 

 

 

Рисунок 18.4

 

 

 

 

 

 

 

 

 

Функция f (t)

1 – четная, поэтому коэффициент

b 0.

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

2

t2

 

 

 

2

t3

 

 

 

2

 

3

 

 

2

 

 

 

 

 

 

 

 

 

 

a0

 

 

 

f (t)dt

 

 

3

1 dt

 

 

 

t

 

 

 

 

 

9

 

 

2

1

 

 

 

 

 

 

 

 

 

 

0

 

 

 

9

 

 

0

 

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

295

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

2

 

 

 

 

 

 

 

U

t 2

1;

dV cos ntdt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

an

f t cos ntdt

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

1 cos ntdt

 

 

 

 

 

2

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

dU

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 tdt;

V n sin nt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

t 2

 

 

 

1

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

U t;

 

 

 

dV sin nt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin nt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

t sin ntdt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

n

 

 

0

 

 

 

 

3n

0

 

 

 

 

 

 

dU dt;

V n cos nt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

t

 

 

 

 

1

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

4

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

cos nt

 

 

 

n

cos ntdt

2

 

 

cos n

3 n

3 sin nt

 

 

 

 

3n

2 1 .

 

 

 

3n

 

 

 

 

0

 

 

0

 

 

 

 

 

 

3n

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ряд Фурье:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

2

 

 

 

 

 

 

2

 

 

 

 

4

 

 

 

 

 

 

 

2

 

 

4

cost

 

cos2t

 

 

cos3t

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

1

 

 

 

 

 

( 1)n cosnt

 

 

 

1

 

 

 

2

 

 

 

 

 

2

 

 

 

2

 

 

 

 

3

 

9

3n

2

 

9

3

 

 

2

 

 

 

 

 

 

 

 

 

 

 

n 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

Пример

15.

 

 

 

 

 

 

 

 

 

 

Разложить

 

в

 

 

 

ряд

Фурье

 

 

 

функцию

 

 

 

 

 

 

 

 

 

t,

t 0

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2t,0 t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение. Продолжим функцию периодическим способом с периодом (рисунок 18.5)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-2 -

 

 

 

2

3

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рисунок 18.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

1

 

 

0

 

 

 

 

 

 

1

 

t 2

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

0

 

 

 

 

 

f (t ) dt

 

 

 

 

 

 

tdt

 

 

2tdt

 

 

 

 

 

 

t 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

2

2

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

296

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

an

 

 

 

 

 

 

 

f t cos ntdt

 

 

 

 

 

 

t cos ntdt

 

2t cos ntdt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U t;

 

 

 

 

dV cos ntdt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dU dt;

 

 

 

V 1 sin nt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

2t

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin nt

 

 

 

 

 

 

 

 

 

 

 

 

cos nt

 

 

 

 

 

 

sin nt

 

 

 

 

 

 

 

 

cos nt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

1

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

1

1

 

 

 

 

 

 

 

 

n

 

 

2

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos n

 

 

 

 

 

cos n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

 

 

 

 

 

1

1

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

2

 

 

 

2

 

 

 

 

2

 

 

 

 

 

2

 

 

2

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1 1 n 2 2 1 n

1

 

 

1 n 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

(1 ( 1)n

2 2( 1)n )

 

 

1

 

 

 

(( 1)n 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n2

 

 

 

 

 

 

n2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0, n 2k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

; a2k 1

 

 

 

 

 

 

 

 

 

 

 

 

 

k=0,1,2,…

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

; n 2k 1

 

 

 

 

 

 

 

 

 

 

 

 

 

(2k

1)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f t sin ntdt

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t sin ntdt

 

2t sin ntdt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U t;

 

 

 

 

 

 

dV sin ntdt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dU dt;

 

 

 

V

 

1 cos nt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

2t

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos nt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin nt

 

 

 

 

 

 

 

 

 

 

 

cos nt

 

 

 

 

 

 

 

sin nt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

n 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

cos n

 

 

n

 

 

cos n

 

 

n

 

1

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ряд Фурье:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

( 1)n 1 sin nt

f (t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos(2k 1)t

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k 0

 

(2k 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

cos t

 

 

 

 

cos 3t

 

 

 

 

cos 5t

 

 

 

 

 

 

 

 

 

 

 

 

sin t

 

 

sin 2t

 

 

sin 3t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

32

 

 

 

 

 

 

 

52

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

2

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

297

Пример 16. Разложить функцию f (t) t на интервале (0; ) : а)

в ряд косинусов, б) в ряд синусов.

Решение. а) Чтобы в разложении были только косинусы, необходимо иметь четную функцию, поэтому продолжим функцию f (t) t на интервале (0 ; ) четным, периодическим образом

(рисунок 18.6).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рисунок 18.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

π

 

 

 

2

π

 

 

 

 

 

 

2

 

 

 

2

 

 

π

 

 

1

π

2

 

0

π

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a0

 

f t dt

tdt

 

t

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

π

 

π

 

π

 

2

 

 

0

 

π

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

π

 

 

 

 

 

 

 

 

 

 

 

2

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U t;

 

 

 

dV

cos ntdt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

an

 

f t d cos ntdt

 

t cos ntdt

 

 

 

 

 

 

dU dt;

 

V

1

sin nt

 

 

 

 

 

 

π

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

1

 

 

π

 

 

2

 

π

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

2

 

 

cos

cos nt0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin nt

 

 

 

 

 

 

 

 

sin nt dt

 

 

 

cos nt

 

 

 

 

 

 

 

 

 

 

 

π

 

 

π

n

πn

2

0

πn

2

 

 

n

 

 

0

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

,

 

n

2k 1,

 

k 1,2,3,...

 

 

 

 

 

 

 

 

 

2

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 1

 

 

 

 

 

π 2k

1 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

πn

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n 2k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bn 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 t

 

 

 

4

 

cost

cos3t

cos5t

 

 

.

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos 2k

 

 

 

 

 

2

 

3

2

 

5

2

 

 

 

...

 

 

 

 

 

 

 

 

2 k 1

 

 

 

2k 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Чтобы разложить ту же функцию

f (t) t

на интервале 0, в

ряд синусов, нужно продолжить эту функцию нечетным, периодическим образом (рисунок 18.7.).

 

 

f(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-3

-2

-

 

2

3

t

 

 

-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рисунок 18.7

 

 

 

 

298

à0 àn 0.

 

2

 

 

 

 

2

 

 

2

 

 

t

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bn

 

f (t)sin

n t

dt

 

t sin n t dt

 

(

 

cosnt

 

sin nt)

 

 

 

 

 

n

n2

0

 

 

0

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

cos n

 

2 (

1)n

2 ( 1)n 1 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

sint

 

 

sin2t

 

sin3t

 

sin4t

 

 

 

f (t) t bn sin nt n ( 1)n 1 sin nt 2( 1

 

 

2

 

 

3

 

4

...) .

 

 

 

 

n 1

 

.n 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Еще раз обратим внимание на то, что указанные в примерах функции раскладываются в соответствующий ряд Фурье только в указанных интервалах. За пределами интервалов этого разложения нет.

Если интервалы заданы в виде

T 2,T

 

 

2

или ( l,l) , то

разложение в ряд Фурье производят

 

по

приведенным выше

формулам.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 17.

Найти косинус-преобразование Фурье и написать

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos

2t,

 

 

t

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

интеграл Фурье для функции:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

,

 

 

 

t

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

Построим график функции (рисунок 18.8.)

 

 

 

 

 

 

 

 

 

 

 

 

 

F(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- /2

 

 

 

- /4

/4

 

 

 

 

/2

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рисунок 18.8

 

 

 

 

 

 

 

 

 

 

Проверим функцию

f(t)

на абсолютную интегрируемость:

 

 

 

 

 

 

 

 

/ 2

 

 

1 sin 2t

 

/ 2

1 sin sin 0.

 

 

 

 

 

 

 

 

 

 

 

 

f (t)

 

dt

 

cos 2tdt

 

 

 

 

 

 

 

 

 

 

 

 

 

/ 2

 

 

2

 

 

/ 2

2

 

 

 

 

 

 

 

 

f(t) абсолютно

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Несобственный интеграл существует,

значит

интегрируема на всей числовой оси.

 

 

 

 

 

 

 

 

 

 

 

 

Функция f(t) четная. Найдем косинус-преобразование :

 

 

2

 

 

 

 

2

 

/ 2

 

 

 

 

 

 

2

 

 

F( )

 

 

f ( )cos d

 

 

cos2 cos d

 

 

 

 

 

0 cos d

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

0

 

 

 

 

 

 

 

 

/ 2

299

 

 

 

 

 

 

 

2

 

 

 

/ 2

1

cos (2 ) cos (2 ) d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

/ 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin (2

 

)

 

 

 

 

 

 

 

sin

(2 )

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

1

 

 

 

 

1

 

 

 

sin( )

 

 

1

 

 

 

 

 

 

1

 

 

sin(

 

)

 

 

 

 

 

 

2

 

2

 

 

 

 

2

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

1

 

 

 

sin

 

 

 

 

1

 

1

 

 

 

 

sin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

2

 

2

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

1

 

 

 

 

 

1

 

 

 

 

 

 

 

2 sin

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

sin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin

 

.

 

 

 

 

 

 

 

 

 

 

2

 

 

2 (4 2 )

 

 

4 2

 

 

 

2

 

 

 

 

2

 

 

2

 

 

 

 

 

 

 

 

 

2

 

 

 

Интеграл Фурье для функции:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

(t)

 

 

2

 

 

F( )cos td

 

2

 

 

 

 

2

 

 

 

 

 

 

 

 

sin

 

cos td

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 2

2

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

cos td .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18.4. Задания на контрольную работу

Задание 1. Исследовать на сходимость числовые ряды (для знакочередующихся рядов провести исследование на абсолютную и условную сходимость).

1.

а)

1

 

 

3

 

 

5

 

7

 

 

 

6

 

9

 

 

 

3

 

 

 

 

 

12

 

 

 

 

 

 

2n

3

n

 

 

 

в)

 

 

 

 

 

.

 

 

 

 

n

 

 

 

 

 

 

 

n 1

2

(n 1)!

 

 

 

 

 

ln

3

n

 

 

 

 

 

д)

 

 

 

.

 

 

 

 

 

 

 

 

 

n 2

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

2

6

 

 

10

14

 

а)

 

 

 

6

 

 

9

 

 

12

15

 

 

 

 

 

n

(4n

2

1) .

 

в)

 

3

 

 

 

n 1

 

 

 

(n 1)!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 n 1

 

 

 

 

б)

 

 

 

 

 

 

 

 

.

 

 

n5 2n2

3

 

n 1

 

 

 

 

 

 

 

3n 1

n2

 

 

 

 

г)

 

 

 

 

 

.

 

3n 2

 

е)

n 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

6n

2

7n 2

 

 

 

( 1)n

1

 

 

 

.

 

 

 

 

 

 

 

 

 

 

n 1

 

4 2n5 3n2 4

 

б)

 

 

 

9n 4 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n 1 3 5n5 9n 7

 

г)

 

 

7n 3

n2

 

 

 

 

 

7n 1

.

 

 

n 1

 

 

 

 

 

 

300