
- •Лекция 1
- •1. Электрические цепи постоянного тока
- •Электрическая цепь постоянного тока. Параметры злементов цепи. Закон Ома
- •1.2. Режимы работы источника электрической энергии
- •1.3. Законы Кирхгофа
- •1.4. Использование законов Кирхгофа для расчета электрических цепей
- •Лекция 2
- •1.5. Эквивалентные преобразования электрических цепей
- •1.5.1. Последовательное соединение элементов.
- •1.5.2. Параллельное соединение элементов.
- •1.5.3. Смешанное соединение резистивных элементов.
- •1.5.4. Эквивалентные преобразования резистивных элементов треугольником и звездой.
- •1.6. Работа и мощность постоянного тока. Закон Джоуля – Ленца
- •2. Электрические цепи переменного тока
- •2.1. Генерация синусоидальной эдс. Основные величины, характеризующие переменный ток
- •2.2. Представление синусоидальных величин аналитически, графически, вращающимися векторами, комплексными числами
- •2.3. Цепь переменного тока с активным сопротивлением
- •2.4. Цепь переменного тока с индуктивностью
- •2.5. Цепь переменного тока с ёмкостью
- •2.6. Неразветвлённая цепь переменного тока с активным сопротивлением, индуктивностью и ёмкостью. Резонанс напряжений
- •2.7. Разветвленная цепь однофазного переменного тока. Резонанс токов
- •2.8. Колебательный lc - контур переменного тока
- •2.9. Мощность однофазного переменного тока. Коэффициент мощности
- •3. Трёхфазные электрические цепи
- •3.1. Преимущество трёхфазного тока. Принцип получения трёхфазной эдс
- •Лекция 6
- •3.2.2. Отсутствие нулевого провода
- •3.3. Обрыв фазы и короткое замыкание фазы без нулевого провода при соединении источников энергии и потребителей звездой
- •3.3.1. Обрыв фазы a
- •3.3.2. Короткое замыкание фазы a
- •3.4. Соединение источников и приёмников электроэнергии треугольником. Соотношения между фазными и линейными напряжениями и токами при симметричной и несимметричной нагрузках
- •3.5. Обрыв фаз и обрыв линейного провода при соединении источников и потребителей треугольником
- •3.5.1. Обрыв фазы ab
- •3.5.2. Обрыв фаз ab и bc
- •3.5.3. Обрыв линейного провода
- •3.6. Мощность трёхфазной цепи
- •Лекция 7
- •3.7. Соотношения активных мощностей при симметричной нагрузке и при соединении звездой и треугольником
- •3.8. Вращающееся магнитное поле трёхфазной системы переменного тока
- •4. Трансформаторы
- •4.1. Однофазные трансформаторы. Устройство и принцип действия
- •Трансформатора
- •Лекция 8
- •4.3. Трёхфазные трансформаторы
- •4.4. Измерительные трансформаторы
- •5. Электрические машины постоянного тока
- •5.1. Устройство и принцип действия генератора постоянного тока
- •5.2. Генераторы постоянного тока независимого и параллельного
- •Лекция 9
- •5.3. Генераторы постоянного тока последовательного и смешанного возбуждений и их основные характеристики
- •5.4. Принцип действия электродвигателя постоянного тока
- •5.5. Электродвигатели постоянного тока параллельного возбуждения
- •5.6. Электродвигатели постоянного тока последовательного и смешанного возбуждений и их основные характеристики
- •5.7. Пуск, регулирование частоты вращения и реверс электродвигателей постоянного тока
- •Лекция 10
- •6.Трёхфазные асинхронные машины
- •6.1.Устройство и принцип действия асинхронного двигателя
- •6.2. Зависимость частоты вращения ротора, величины эдс и тока
- •6.3. Электромагнитный момент и механическая характеристика
- •Лекция 11
- •6.4. Пуск и реверс асинхронных двигателей
- •6.5. Регулирование частоты вращения трёхфазного асинхронного двигателя
- •7. Полупроводниковые приборы
- •7.1. Электропроводность полупроводников
- •7.2. Полупроводниковые диоды. Устройство, принцип действия
- •7.3. Биполярные транзисторы. Устройство, принцип работы
- •7.4. Схемы включения биполярных транзисторов с p-n-p структурой
- •7.5. Полевые транзисторы с управляющим p-n переходом
- •7.6. Динисторы, тиристоры. Устройство, принцип действия
- •7.7. Симисторы. Устройство, принцип действия
- •Лекция 14
- •7.8. Фоторезисторы и фотодиоды. Устройство, принцип действия
- •7.9. Фототранзисторы, фототиристеры, оптроны.
- •8. Схемы электронных преобразователей
- •8.1. Однополупериодные выпрямители
- •Лекция 15
- •8.2. Двухполупериодные выпрямители
- •8.3. Трёхфазные выпрямители. Электрические сглаживающие фильтры
- •Лекция 16
- •8.4. Электронные усилители на биполярных транзисторах
- •8.5. Импульсные усилители
- •8.6. Операционные усилители
- •9. Цифровые устройства
- •9.1. Логические функции, логически устройства.
- •9.2. Основные логические элементы.
- •4. Логический элемент или, операция логическое сложение ,
- •9.3. Асинхронный rs-триггер. Устройство, принцип действия
- •Лекция 18
- •9.4. Синхронный rs-триггер. Устройство, принцип действия
- •9.5. Синхронные d-триггер. Устройство, принцип действия
- •9.6. Шифратор. Устройство, принцип работы
- •9.7. Дешифратор. Устройство, принцип работы
- •Лекция 19
- •9.8. Регистры. Устройство, принцип работы
- •9.9. Счётчики импульсов. Устройство, принцип работы
- •Библиографический список
- •Cодержание
- •Иванов Евгений Николаевич
- •Электротехника и электроника
- •Конспект лекций
5.4. Принцип действия электродвигателя постоянного тока
Машины постоянного тока обратимы, то есть могут работать либо в режиме генератора при механическом вращении якоря, либо в режиме электродвигателя при подаче электрического напряжения от сети в цепь возбуждения. На рис.5.17 изображена модель электродвигателя постоянного тока, устройство которого аналогично устройству генератора постоянного тока (рис.5.1).
При
включении машины постоянного тока в
сеть, напряжение U
, поданное на щётки Щ1 и Щ2, вызовет ток
в цепи якоря, представленной в виде
рамки соединённой с пластинами К1 и К2
коллектора; одновременно появится ток
в обмотке параллельного возбуждения
,
что вызовет магнитный поток Ф
между полюсами N
и S
статора. При взаимодействии тока якоря
с магнитным потоком Ф
полюсов создается электромагнитный
момент равный моменту
,
направление которого определяется по
правилу левой руки.
начнет вращать рамку якоря по часовой
стрелке.
Рис.5.17. Модель электродвигателя постоянного тока
При этом
электромашина станет работать в режиме
электродвигателя. Но во всяком вращающемся
магнитном поле, согласно электромагнитной
индукции, в якоре наводится ЭДС
.
Следует отметить, что при вращении рамки
якоря, в самой рамке возникают мгновенные
значения тока
и ЭДС e
.
Направление мгновенного значения тока
определяется
по правилу левой руки. Направление
e
определяется
по правилу правой руки. ЭДС
e
в
якоре двигателя имеет направление,
противоположное
.
Поэтому
называется противо ЭДС. Тогда по второму
закону Кирхгофа:
,
(5.4)
откуда
.
(5.5)
Умножив
выражение (5.5) на значение
получим:
,
(5.6)
где
– полезная мощность,
- электромагнитая мощность или мощность
вращения,
– мощность потерь.
Момент вращения или электромагнитный момент определяется по формуле:
[Н·м],
(5.7)
где n [об/мин], ω [рад/с].
5.5. Электродвигатели постоянного тока параллельного возбуждения
и их основные характеристики
На рис.5.18 изображена схема электродвигателя постоянного тока параллельного возбуждения.
Рис.5.18. Электрическая схема электродвигателя постоянного тока параллельного возбуждения
В цепь
якоря включен пусковой реостат
,
а в цепь шунтовой обмотки включен реостат
возбуждения
.
Oбмотка
возбуждения электродвигателя имеет
большое сопротивление. Она состоит из
большого числа витков тонкого провода.
Обмотка якоря имеет небольшое сопротивление
.
При подаче постоянного напряжения
ток двигателя определяется выражением
.
В момент
пуска двигателя последовательно с
якорем полностью вводят пусковой реостат
,
тогда пусковой ток двигателя определяется
выражением
.
При этом сопротивление
подбирают так, чтобы выполнялось
равенство
.
Номинальный ток
указывается на щитке двигателя, тогда
.
При
вращении якоря двигателя в якорной
обмотке возбудится ЭДС
,
где
-
конструктивная постоянная машины,
-
частота вращения якоря в об/с,
Ф
– величина магнитного потока, измеряемая
в веберах. Направление
противоположно
.
Пусковой
реостат
включается во время пуска двигателя на
(2
3)с
до достижения частоты вращения якоря
.
Реостат
при пуске выведен, а ток возбуждения
максимален. С помощью реостата возбуждения
устанавливают значение тока
и выводят пусковой реостат
.
Характеристика
холостого хода двигателя
при
(рис.5.19)
снимается без нагрузки.
При
уменьшении тока возбуждения
или магнитного поля статора частота
вращения якоря будет увеличиваться, и
двигатель может пойти "вразнос".
Обрыв обмотки возбуждения ОВ приводит
к возрастанию тока якоря
и сгорания обмотки якоря.
Рис.5.19. Характеристика холостого хода электродвигателя постоянного тока параллельного возбуждения
Механическая
характеристика двигателя
при
,
(рис.5.20) снимается с нагрузкой на валу.
При этом момент равен моменту вращения
или электромагнитному моменту и
определяется по формуле:
.
(5.8)
Рис.5.20. Механическая характеристика электродвигателя постоянного тока
Механические характеристики двигателей используются при проверке работоспособности приводов станков и машин.
Регулировочная
характеристика двигателя постоянного
тока
при
,
(рис.5.21) снимается с нагрузкой.
Характеристика поволяет стабилизировать
частоту вращения двигателя.
Рис.5.21. Регулировочная характеристика электродвигателя постоянного тока