Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛекцБиохим.docx
Скачиваний:
161
Добавлен:
14.02.2015
Размер:
3.83 Mб
Скачать

Цикл трикарбоновых кислот: реакции, биологическая роль. Нарушение энергетического обмена.

План.

1. Реакции цикла трикарбоновых кислот.

2. Биологическая роль цикла Кребса.

Цикл Кребса– 10 последовательно протекающих реакций, начинающихся с вовлечения в процесс шавелевоуксусной кислоты и заканчивающихся высвобождением ее.

Биологическая роль цикла Кребса

1. При расщеплении одной молекулы ацетил-КоА в цикле Кребса высвобождается 2 молекулы углекислого газа – в результате изоцитатдегидрогеназной и ά-кетоглутаратдегидрогеназной реаций. Первая из них сопряжена с прямым декарбоксилированием, вторая – окислительным. Углекислый газ в основном выделяется легкими, но он может участвовать в функционировании буферных систем крови.

2. В цикле Кребса восстанавливается 3 молекулы НАД и 1 молекула ФАД. Они переносят ионы водорода в дыхательную цепь митохондрий, где из них может генерироваться 11 молекул АТФ. НАД-Н2 генерируется в изоцитатдегидрогеназной, изоцитатдегидрогеназной и ά-кетоглутаратдегидрогеназной реаций атдегидрогеназной и малатдегидрогеназной реациях, ФАД-Н2 – в сукцинатдегидрогеназной реакции. Непосредственно цикле Кребса в результате реакции субстратного фосфорилирования, сукциниотиокиназной реакции, также может генерироваться одна молекула гуанозинтрифосфата (ГТФ), способная передавать энергию для синтеза АТФ.

3. Генерируемые в цикле Кребса ά-кетоглутаровая и щавелевоуксусная кислоты участвуют в реакциях переаминирования аминокислот.

4. В цикле Кребса окисляется сукцинил-КоА, образующийся в преджелудках жвачных животных в процессе расщепления микрофлорой клетчатки.

Лекция №6

Гидролиз белков в органах пищеварительной системы. Метаболизм аминокислот в клетках.

План

1. Гидролиз белков в органах пищеварительной системы, транспорт аминокислот в клетки.

2. Метаболизм аминокислот: реакции дезаминирования, переаминирования, декарбоксилирования.

3. Образование цистеина, метионина и др.

.

Гидролиз белков в органах пищеварительной системы

В ротовой полости происходит механическое измельчение пищи. Гидролиз белков начинается в желудке (у жвачных животных в сечуге) под действием пепсина. Вырабатывается он клетками слизистой оболочки в виде неактивного пепсиногена. От последнего под действием хлористоводородной кислоты отщепляется часть молекулы и он переходит в активный пепсин. Хлористоводородная кислота, кроме того, создает для пепсина оптимум рН (1,5-2,5), способствует набуханию белков, убивает микроорганизмы, способствует эвакуации желудочного содержимого, воздействуя на рецепторы пилоруса. Пепсин, гидролизуя в белках пептидные связи, образованные кабоксильными группами циклических аминокислот и аминогруппами аспарагиновой и глутаминовой кислот, расщепляет их до полипептидов (пептонов). У молодняка рН желудка 3-3,5 и белки в нем расщепляются гастроксином.

Из желудка пищевый комок поступает в 12-персную кишку, в которой его содержимое нейтрализуется карбонатами кишечного сока до рН 7,5-8. Сюда из поджелудочной железы поступают ряд проферментов: трипсиноген, химотрипсиноген, проэластаза и прокарбоксипептидаза. В дальнейшем происходит их активация путем отщепления пептидов, закрывающих их активные центры. Трипсиноген превращается в активный трипсин энтерокиназой, вырабатываемой клетками стенки кишечника. Трипсин, гидролизуя пептидные связи полипептидов, образованные кабоксильными группами лизина и аргинина, превращает их в более мелкие пептиды.

Химотрипсиноген, проэластаза и прокарбоксипептидаза активируются трипсином, превращаясь в химотрипсин, эластаза и карбоксипептидаза. Первый из них расщепляет пептидные связи, образованные кабоксильными группами фенилаланина, тирозина и триптофана. Образовавшиеся пептиды гидролизуются в кишечнике карбоксипептидазой и аминопептидазой, вырабатываемой стенкой кишечника. Первая из них отщепляет от пептида одну аминокислоту, где крайняя группа – СООН, вторая – где крайняя аминогруппа. На конечном этапе образовавшиеся дипептиды расщепляются дипептидазами. Эластические волокна соединительной ткани расщепляются эластазой. Описанные реакции ускоряются в присутствии ворсин тонкого кишечника (пристеночное пищеварение).

Транспорт аминокислот кровью и превращение их в клетках

Из кишечника аминокислоты поступают в кровь, где сорбируются на альбуминах, и переносятся в органы. В клеточную мембрану встроен фермент γ-глутамилтрансфераза, который переносит аминокислоты в клетки. В этом процессе участвует трипептид глутатион, состоящий из глутаминовой кислоты, цистеина и глицина. В клетках также используются аминокислоты, образовавшиеся при расщеплении ее белков под действием лизосомальных ферментов - катепсинов.

Большая часть аминокислот используется для биосинтеза структурных белков, ферментов, других регуляторов обмена веществ, в частности гормонов, и других белков и пептидов. Незаменимые аминокислоты (аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин) должны поступать с пищей. Заменимые аминокислоты могут синтезироваться из других аминокислот, углеводов и др. веществ.

Аминокислоты могут использоваться в качестве энергетического материала. При окислении 1 белка образуется 4,2 ккал. При этом образуется аммиак, обезвреживающийся в дальнейшем в мочевину.

Из аминокислот синтезируются нуклеотиды нуклеиновых кислот, АТФ, НАД, гемм, порфирины, меланины и другие вещества.

Метаболизм аминокислот

Реакции переаминирования (трансаминирования)- обмен аминогруппы аминокислоты на карбонильную группу кетокислоты. Образуется новая аминокислота и новая кетокислота. Реакции обратимые. Небелковой частью ферментов их является пиридоксальфосфат (ПФ). Название фермента включает название аминокислоты, донора аминогруппы.

СООН СООН

1 1

СН2 3СН2СН3

1 1 1 1

СН2 + С=ОАланинамино- СН2 + СН-NH2

1 1 трансфераза 1 1

СН-NH2 СООНПиридоксаль- С=ОCООН

1 фосфат1

COOHСООН

Глутамино- Пировиноград- α-кетоглутаро- Аланин

вая кислота ная кислота вая кислота

Реакции являются основным источником в образовании одних заменимых аминокислот из других. Например, если в организме избыток аланина, но не хватает аспарагиновой кислоты, то протекает двухстадийный процесс:

Аланин + α-кетоглутарат Аланинаминотрансфераза Глутамат + Пируват;

ПФ

Глутамат + оксалоацетат Аспартатаминотрансфераза α-кетоглутарат + аспартат.

ПФ

Реакции декарбоксилирования – отщепление углекислого газа от карбоксильной группы аминокислоты. Коферментом декарбоксилаз аминокислот также является пиридоксальфосфат (ПФ). В этих реакциях образуются некоторые гормоны и нейромедиаторы, передающие импульсы в нервных клетках.

СООН СООН

1 1

СН2 СН2

1 -СО21

СН2 Глутаматде-СН2

1 карбоксилаза1

СН-NH2 Пиридоксаль- СН2

1 фосфат1

COOHNH2

Глутамино- γ-аминомасля-

вая кислотаная кислота

Реакции дезаминирования – отщепление от аминокислоты аминогруппы.

У микроорганизмов протекают реакции восстановительного, гидролитического и внутримолекулярного дезаминирования, а в клетках млекопитающих – реакции окислительного дезаминирования.

Лекция №7

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]