Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Дифференциальные-уравнения-1го-порядка.doc
Скачиваний:
271
Добавлен:
13.02.2015
Размер:
473.6 Кб
Скачать

§ 6. Обобщенное однородное уравнение.

Уравнение M(x,y)dx+N(x,y)dy=0 называется обобщенным однородным, если удается подобрать такое число k, что левая часть этого уравнения становится однородной функцией некоторой степени m относительно x, y, dx и dy при условии, что x считается величиной первого измерения, ykго измерения, dx и dyсоответственно нулевого и (k-1)-го измерений. Например, таким будет уравнение . (6.1)

Действительно при сделанном предположении относительно измерений

x, y, dx и dy члены левой части иdy будут иметь соответственно измерения -2, 2k и k-1. Приравнивая их, получаем условие, которому должно удовлетворять искомое число k: -2 = 2k = k-1. Это условие выполняется при k = -1 (при таком k все члены левой части рассматриваемого уравнения будут иметь измерение -2). Следовательно, уравнение (6.1) является обобщенным однородным.

Обобщенное однородное уравнение приводится к уравнению с разделяющимися переменными с помощью подстановки , гдеz – новая неизвестная функция. Проинтегрируем указанным методом уравнение (6.1). Так как k = -1, то , после чего получаем уравнение.

Интегрируя его, находим , откуда. Это общее решение уравнения (6.1).

§ 7. Линейные дифференциальные уравнения 1-го порядка.

Линейным уравнением 1-го порядка называется уравнение, линейное относительно искомой функции и ее производной. Оно имеет вид:

, (7.1)

где P(x) и Q(x) – заданные непрерывные функции от x. Если функция , то уравнение (7.1) имеет вид: (7.2)

и называется линейным однородным уравнением, в противном случае оно называется линейным неоднородным уравнением.

Линейное однородное дифференциальное уравнение (7.2) является уравнением с разделяющимися переменными:

(7.3)

Выражение (7.3) есть общее решение уравнения (7.2). Чтобы найти общее решение уравнения (7.1), в котором функция P(x) обозначает ту же функцию, что и в уравнении (7.2), применим прием, называемый методом вариации произвольной постоянной и состоящий в следующем: постараемся подобрать функцию С=С(x) так, чтобы общее решение линейного однородного уравнения (7.2) являлось бы решением неоднородного линейного уравнения (7.1). Тогда для производной функции (7.3) получим:

.

Подставляя найденную производную в уравнение (7.1), будем иметь:

или .

Откуда , где- произвольная постоянная. В результате общее решение неоднородного линейного уравнения (7.1) будет(7.4)

Первое слагаемое в этой формуле представляет общее решение (7.3) линейного однородного дифференциального уравнения (7.2), а второе слагаемое формулы (7.4) есть частное решение линейного неоднородного уравнения (7.1), полученное из общего (7.4) при . Этот важный вывод выделим в виде теоремы.

Теорема. Если известно одно частное решение линейного неоднородного дифференциального уравнения , то все остальные решения имеют вид, где- общее решение соответствующего линейного однородного дифференциального уравнения.

Однако надо отметить, что для решения линейного неоднородного дифференциального уравнения 1-го порядка (7.1) чаще применяется другой метод, иногда называемый методом Бернулли. Будем искать решение уравнения (7.1) в виде . Тогда. Подставим найденную производную в исходное уравнение:.

Объединим, например, второе и третье слагаемые последнего выражения и вынесем функцию u(x) за скобку: (7.5)

Потребуем обращения в нуль круглой скобки: .

Решим это уравнение, полагая произвольную постоянную C равной нулю: . С найденной функциейv(x) вернемся в уравнение (7.5): .

Решая его, получим: .

Следовательно, общее решение уравнения (7.1) имеет вид:

.