
4 Экологические стратегии популяций
Экологические стратегии популяций– это общая характеристика роста и размножения в пределах данной популяции. В 1938 году русский ботаник Леонтий Григорьевич Раменский выделилтри основных типа стратегий выживаниясреди растений:
- виоленты– подавляют всех конкурентов. К ним относятся деревья, тростники, сфагновые мхи, доминирующие на заболоченных территориях;
- патиенты– виды, способные выжить в неблагоприятных условиях («тенелюбивые», «сухолюбивые», «солелюбивые» и т.п.);
- эксплеренты– виды, способные быстро появляться там, где нарушены коренные сообщества, – на вырубках и гарях (кипрей, осины, березы), на отмелях и т.д.
На основании скорости роста популяций, рождаемости, смертности и прочих характеристик выделяют несколько экологических стратегий популяций:
а) r-стратеги (r-виды, r-популяции)– популяции из быстро размножающихся, но менее конкурентоспособных особей. Имеют J-образную (экспоненциальную) кривую роста численности. Такие популяции быстро расселяются, но они малоустойчивы и быстро погибают. К ним относятся бактерии, тли, однолетние растения и др.
б) к-стратеги (к-виды, к-популяции)– популяции из медленно размножающихся, но более конкурентоспособных особей. Имеют S-образную кривую роста численности. Такие популяции населяют стабильные местообитания. К ним относятся птицы, млекопитающие, деревья и др.
Динамика роста численности популяции. “Кривые“ роста популяции (графическое изображение) и их математические формулы.
Скорость роста популяции – это изменение численности популяции в единицу времени. Она может быть либо положительной, либо нулевой, либо отрицательной и зависит от показателей рождаемости, смертности и миграции особей. Различают абсолютную и удельную скорость роста популяции:
а) абсолютная (общая) скорость роста –выражается изменением численности популяции за промежуток времени;
б) удельная скорость роста – отношение скорости роста к исходной численности.
Скорость роста может быть выражена в виде кривой роста популяции (рисунок).
Рисунок – Кривые роста популяции
Существует две основные модели роста популяции:
- J-образная кривая – отражает неограниченный экспоненциальный рост численности популяции, не зависящий от плотности популяции. Подобный рост популяций иногда наблюдается в природе: «цветение» воды в результате бурного развития фитопланктона, вспышка массового размножения некоторых вредителей, рост бактерий в свежей культуре. Однако это происходит непродолжительное время, так как после превышения емкости среды неизбежно произойдет резкое снижение численности.
- S-образная (сигмоидная, логистическая) кривая – отражает логистический тип роста в реальных экологических условиях, зависящего от плотности популяции, при котором скорость роста популяции снижается по мере роста численности (плотности). Сначала рост популяции невелик, но затем он нарастает, но через некоторое время замедляется и выходит на плато (рисунок).
Продолжительность жизни и выживаемость. Кривые выживания.
Существует 3 типа смертности, которым соответствуют определенные кривые выживаемости (рисунок):
Кривая I типа свойственна организмам, смертность которых на протяжении всей жизни незначительна, но возрастает в ее конце. Идеальная кривая для выживаемости популяции, в которой лишь старение служит главным фактором, влияющим на смертность (например, популяции лабораторных животных в идеальных условиях, люди в развитых странах, некоторые крупные млекопитающие) Это так называемая «кривая дрозофилы».
Кривая II типа характерна для видов, у которых смертность остается примерно постоянной в течение всей жизни. Это могут быть растущие популяции в оптимальных условиях среды (например, популяции высокоорганизованных птиц, млекопитающих). Это «кривая гидры».
Кривая III типа отражает массовую гибель особей в начальный период жизни, причем смертность постоянна в течение всей жизни организмов. Главный фактор, определяющий смертность, – случай («популяция стеклянных стаканов в кафетерии»). Такая кривая характерна для большинства популяций растений и животных (например, многие рыбы, беспозвоночные, растения и другие организмы, не заботящиеся о потомстве, и выживающие за счет огромного количества икринок, личинок, семян и т.п.). Это «кривая устрицы».
Рисунок – Кривые выживаемости
Изучение смертности имеет важное значение для определения степени уязвимости популяций вредителей народного хозяйства.
Экологическая стратегия выживания. Основные признаки К- и r-стратегов. Типы стратегий по Л.Г. Раменскому.
Экологические стратегии популяций – это общая характеристика роста и размножения в пределах данной популяции. В 1938 году русский ботаник Леонтий Григорьевич Раменский выделил три основных типа стратегий выживания среди растений:
- виоленты – подавляют всех конкурентов. К ним относятся деревья, тростники, сфагновые мхи, доминирующие на заболоченных территориях;
- патиенты – виды, способные выжить в неблагоприятных условиях («тенелюбивые», «сухолюбивые», «солелюбивые» и т.п.);
- эксплеренты – виды, способные быстро появляться там, где нарушены коренные сообщества, – на вырубках и гарях (кипрей, осины, березы), на отмелях и т.д.
На основании скорости роста популяций, рождаемости, смертности и прочих характеристик выделяют несколько экологических стратегий популяций:
а) r-стратеги (r-виды, r-популяции) – популяции из быстро размножающихся, но менее конкурентоспособных особей. Имеют J-образную (экспоненциальную) кривую роста численности. Такие популяции быстро расселяются, но они малоустойчивы и быстро погибают. К ним относятся бактерии, тли, однолетние растения и др.
б) к-стратеги (к-виды, к-популяции)– популяции из медленно размножающихся, но более конкурентоспособных особей. Имеют S-образную кривую роста численности. Такие популяции населяют стабильные местообитания. К ним относятся птицы, млекопитающие, деревья и др.
Факторы динамики численности.
Факторы, вызывающие изменение численности, разнообразны. Их подразделяют на две группы: не зависимые и зависимые от плотности популяции.
К не зависимым от плотности популяции относят преимущественно абиотические факторы. Они действуют на популяцию при любой ее численности. Например, особо суровые зимы вызывают гибель зимующих особей капустной белянки вне зависимости от того, большое или малое количество особей составляет эту популяцию в данный зимний период. Или наоборот, благоприятные условия зимовки могут способствовать повышению численности особей как в малочисленных популяциях, так и в больших. Следовательно, разнообразные абиотические факторы среды могут вызвать значительные колебания численности популяции.
К зависимым от плотности популяции принадлежат биотические факторы — естественные враги (хищники, паразиты, возбудители болезней) и пищевые ресурсы. Их количество изменяется вместе с изменением численности популяции. Установлено, что как только плотность популяции того или иного вида хищников увеличивается, численность популяции его основной жертвы начинает снижаться. Такой же эффект на популяцию хозяина оказывают и паразиты. Как правило, чем выше плотность популяции, тем сильнее влияние этих факторов. Без них численность популяции могла бы неограниченно увеличиваться, что привело бы к полному уничтожению источников корма. Таким образом, особенность действия факторов^ зависящих от плотности, заключается в сглаживании резких колебаний численности, благодаря чему численность популяции поддерживается на определенном оптимальном уровне.
Одним из механизмов регулирования численности является плодовитость. Она снижается при уменьшении пищевой обеспеченности, которое наблюдается при увеличении численности популяции. Снижение плодовитости особей приводит к понижению рождаемости, а следовательно, к замедлению темпов роста популяции (рис. 1.7).
Важную роль в регуляции плотности популяции играют поведенческие факторы, в частности территориальность. Наличие у особей определенного вида своего индивидуального участка, который обозначается разными способами (мочой, секретом пахучих желез, царапинами на деревьях, звуками и др. ), ограничивает рост численности их популяций, так как особи, не имеющие собственного участка, не участвуют в размножении.
Таким образом, популяции подвержены воздействию комплекса абиотических и биотических факторов, которые приводят в действие механизмы регуляции их численности. Поэтому в не нарушенных деятельностью человека природных сообществах редко происходит неудержимый рост численности, исчерпание ресурсов и гибель популяций.
Численность естественных популяций не остается постоянной, так ках изменчивы условия окружающей их среды. Диапазон изменчивости численности различен у разных видов. Он обусловлен степенью изменчивости условий среды обитания, а также биологическими особенностями конкретного вида. Выделяют три наиболее часто встречаемых типа динамики численности: сезонный, многолетний периодический и устойчивый. Регуляция численности в природных условиях осуществляется не зависимыми и зависимыми от плотности популяции факторами.
Концепция саморегуляции, стресс-реакция. Множественность механизмов популяционного гомеостаза.
Сколь бы ни велики были различия между стохастизмом и регуляционизмом, сторонники этих подходов сходились на том, что ведущая роль в ограничении роста численности популяций принадлежит факторам внешней среды, например таким, как нехватка пищи или неблагоприятные погодные условия. Однако в начале 60-х гг. была предложена завоевавшая вскоре большую популярность концепция саморегуляции популяций, согласно которой в процессе роста плотности популяции изменяется не только и не столько качество среды, в которой существует эта популяция, сколько качество самих составляющих ее особей. Это изменение свойств особей, направленное на то, чтобы затормозить дальнейший рост популяции, выражается в конечном счете
- в снижении плодовитости,
- удлинении сроков полового созревания,
- возрастании смертности и
- миграционной активности.
Как подчеркнул в свое время один из авторов этой концепции английский эколог Д. Читти (Chitty), любая популяция способна в принципе регулировать свою численность так, чтобы не подрывались возобновляемые ресурсы местообитания и не требовалось вмешательства каких-либо внешних факторов, например хищников или неблагоприятной погоды. Согласно концепции саморегуляции изменение качества особей, сказывающееся на росте численности, может быть как фенотипическим, так и генотипическим. В последнем случае оно проявляется чаще всего как сдвиг в количественном соотношении разных генотипов В рамках подобной концепции теряет всякий смысл традиционное деление факторов на зависимые и не зависимые от плотности.
Основанием для выдвижения гипотезы саморегуляции послужили в первую очередь результаты наблюдений за лабораторными популяциями мышей и других грызунов. Выяснилось, что при возрастании плотности популяции, а точнее, частоты контактов между особями (понятно, что частота контакте зависит не только от абсолютной плотности зверьков, но и от того, как устроено их местообитание, в частности, насколько богато оно всевозможными укрытиями) у грызунов возникает состояние стресса, которое характеризуется рядом признаков, в том числе резким повышением активности надпочечников. Гормональные сдвиги, происходящие в организме под влиянием нервного возбуждения, тормозят деятельность половых желез, что в конечном счете приводит к более позднему половому созреванию, снижении плодовитости, а иногда даже к полному прекращению размножения и резорбции зародышей. Кроме того резко возрастает и смертность как непосредственный результат стрессового состояния, а в природных условиях и как результат резко усилившейся миграции животных в новые местообитаниях, где больше риск гибели от самых разнообразных причин.
Среди механизмов, обеспечивающих саморегуляцию популяций, очень важное место принадлежит тем, которые непосредственно связаны с особенностями поведения отдельных особей. Поведение может сказываться на величине рождаемости и смертности через физиологические сдвиги в организме (как, например в случае описанной выше стресс-реакции), а может через изменение пространственного распределения особей. Так, если животные защищают определенную территорию от вторжения чужаков, то при возрастании плотности популяции все большее число особей не могут удержать собственную территорию (или вытеснить ранее обосновавшихся конкурентов) и соответственно должны мигрировать в менее благоприятные места, где они чаще гибнут от хищников, нехватки пищи или воздействия абиотических факторов.
Помимо поведенческих механизмов в ограничении роста численности важная роль может принадлежать сопряженным с плотностью изменениям генетического состава популяции. Очевидно, такой генетический механизм подразумевает наличие в популяции по крайней мере двух разных генотипов, один из которых имеет преимущество в условиях высокой плотности, а другой - низкой.
Например, канадский эколог Ч. Кребс вместе со своими сотрудниками показал (Krebs), что у пенсильванской полевки(Microtus pennsylvanicus)на пиках численности и в периоды депрессий между пиками доминируют разные генотипы: особи одного генотипа быстро размножаются, но плохо выживают при большой скученности (в период подъема численности они, как правило, мигрируют из основного местообитания), а особи другого — лучше переносят повышенную скученность, но характеризуются меньшей плодовитостью.
Генетический механизм регуляции численности скорее всего действует в совокупности с каким-нибудь другим, например с прессом хищников. Рассмотрим приведенный Д. Пайментлом (Pitiientel) гипотетический пример такой взаимосвязи. Пусть какое-нибудь растение, поедаемое травоядными животными, имеет ген, контролирующий его выживаемость и одновременно пригодность в качестве пищи для травоядных. Пусть данный ген встречается в форме двух аллелей А и а, причем гомозиготы АА характеризуются высокой выживаемостью и одновременно съедобностью для травоядных, гомозиготы аа - низкой выживаемостью и практической несъедобностью для травоядных, а гетерозиготы Аа отличаются промежуточными свойствами. В итоге соотношение рассматриваемых свойств у трех возможных генотипов нашего гипотетического растения следующее:
|
АА |
Аа |
аа |
Выживаемость |
высокая |
низкая |
очень высокая |
Пригодность в качестве пищи для травоядных |
пригоден |
малопригоден |
практически не пригоден |
Если предположить, что содержащая смесь всех трех генотипов популяция подвергнется воздействию травоядных, то следует ожидать резкого повышения смертности генотипа АА и в значительно меньшей степени - генотипа Аа. Но очевидно также, что по мере потребления генотипа АА будет ослабляться внутривидовая конкуренция и повысятся шансы на выживание у генотипов Аа и аа. Увеличение доли этих генотипов будет продолжаться до тех пор, пока не ослабнет пресс травоядных (что неизбежно, поскольку доля съедобных растений будет снижаться). В условиях же ослабления выедания сможет утвердиться, а позднее занята и доминирующее положение генотип АА. Но как только это произойдет, сразу усилится пресс травоядных, и весь цикл начнется сначала. Математическая модель этого процесса показывает, что колебания долей разных генотипов действительно возникают, и вскоре они затухают, и соотношение генотипов устанавливается на некотором постоянном уровне, соответствующем заданной интенсивности выедания.
Таким образом, важнейшим условием регуляции численности популяции оказывается разнокачественность составляющих ее особей.
Примером крайней выраженности такой разнокачественности может быть явление «фазовой изменчивости» у нескольких видов саранчи (Schisfocerca gregaria, Locusta migratoria, Nomodacri septemfasciataи некоторых других), стаи которых время от времени совершают опустошительные налеты на посевы сельскохозяйственных культур в Африке и Азии. Хотя налеты саранчи известны с незапамятных времен, конкретные биологические механизмы, определяющие процессы увеличения численности и миграции, начали изучаться только в 20-30-е гг. нашего столетия, причем многие моменты и по сей день остаются неясными. Известно, однако, что у всех перечисленных видов имеются две сменяющие друг друга формы (фазы) - одиночная и стадная, которые настолько сильно различаются (как морфологически, так и физиологически), что ранее их относили к разный видам. По сравнению с одиночной фазой стадная характеризуется более яркой окраской, несколько другими пропорциями тела, высокой двигательной активностью и некоторым особенностями поведения, прежде всего стремлением собираться в стаи. Кроме того, у стадной фазы вылупляющиеся из яиц молодые особи (нимфы) лучше обеспечены запасами воды и питательных веществ; видимо, поэтому они отличаются более высокой выживаемостью и более быстрым развитием. Плодовитости стадной фазы меньше, чем одиночной, но яйца более крупные.
В периоды между опустошительными нашествиями мигрирующие виды саранчовых, представленные одиночной фазой, встречаются в небольших количествах на довольно ограниченной территории. Подробности жизни одиночной фазы саранчовых изучены явно недостаточно, но известно, что местообитания их представляют собой открытые, поросшие редкой травянистой растительностью пространства (обязательны участки голой земли, в которую саранча откладывает яйца), подверженные чередованию засушливых и дождливых периодов. Основная часть когорты гибнет на стадии нимф, но в некоторые годы (которым предшествуют длительные засушливые периоды) выживаемость нимф резко повышается, и численность саранчи за одно поколение может увеличиться в 100 раз. Как это ни удивительно, но наиболее высокая выживаемость нимф достигается в те годы, когда растительности, служащей им пищей, бывает мало. Видимо, все дело в том, что скудная после сильной засухи растительность гораздо богаче питательными веществами (в частности, азотом) по сравнению с той, что обильно развивается в условиях достаточной обеспеченности влагой.
Таким образом, не исключено, что именно определенное сочетание климатических условий служит первым толчком к будущей массовой миграции, поскольку приводит к повышению локальной плотности популяции, представленной изначально только особями одиночной фазы. Затем вследствие участившихся контактов между особями начинается превращение одиночной фазы в стадную. А поскольку особи стадной фазы быстрее размножаются, а главное, имеют ярко выраженную тенденцию собираться в группы, процесс образования стаи идет очень быстро, с нарастающей скоростью. Мигрирующие по ветру стаи могут переноситься на громадные расстояния (так, например, область, в пределах которой встречаются стаи N. septemfasciata,в 1500 раз превышает по площади область постоянного обитания одиночной фазы). Биологический смысл образования стадной фазы и миграции, по-видимому, в том, чтобы избежать риска вымирания в крайне нестабильной среде и найти новое подходящее для размножения место. Если во время миграции такое место найдено, размер стаи может увеличиваться и достигать громадных размеров. Так, стаяSchistocerca gregaria,совершившая налет в Сомали в 1957 г., состояла из 1,6 х 1010особей, и масса ее достигала 50 тыс. т. Если учесть, что за день одна саранча съедает столько, сколько весит сама, то нетрудно представить себе колоссальные размеры бедствий.
Общие принципы популяционного гомеостаза
То же можно сказать и о таких особенностях популяций, как средние размеры индивидуальных (или стадных) территорий, степень подвижности животных и т. п. Упоминавшаяся в гл. 10 сезонная динамика пространственной структуры у рада видов — пример устойчивого приспособления к закономерно повторяющейся смене условий жизни популяции. Характерным свойством популяции может быть и средний уровень плодовитости. Адаптивный характер этого показателя может проявляться в увеличении плодовитости в популяциях, занимающих пессимальные местообитания, что компенсирует повышенную смертность в этих условиях.
Механизмы формирования и закрепления уровня стабилизации наиболее генеральных популяционных свойств основываются в первую очередь на генетических (связанных с определенной степенью изоляции) и микроэволюционных процессах.
Изменчивость, динамичность конкретных условий жизни вызывают формирование лабильных функциональных адаптаций, действующих на данном уровне стабилизации популяционных функций и поддерживающих этот уровень. Механизмы таких адаптаций основаны на эколого-физиологических процессах. При всем многообразии конкретных проявлений лабильные адаптации популяционного уровня действуют по единому принципу обратной связи: в ответ на внешние или внутрипопуляционные изменения они вызывают адекватные сдвиги во внугрипопуляционных отношениях, продолжающиеся до тех пор, пока не восстановятся «уравновешенные» отношения между популяцией и средой. Именно лабильные авторегуляторные процессы придают определенную устойчивость популяционным системам на фоне изменчивых условий их жизни.
В том случае, когда изменения среды выходят за пределы адаптированного диапазона, биологически выгодной оказывается смена уровня стабилизации системы. В этом случае на основе внутри-популяционной разнокачественности начинаются процессы отбора, ведущие к перестройке наиболее генерализованных качеств популяции в соответствии с изменившимися средними условиями ее жизни. Таким образом, гомеостатические механизмы популяционного уровня лежат в основе того, что в относительно стабильных условиях популяция функционирует как устойчивая форма существования вида, а в условиях направленного изменения среды представляет собой исходную элементарную единицу эволюционного процесса.
Гомеостазирование популяционных функций связано с такими показателями, как численность и плотность населения. Это положение исходно предусматривает динамический характер основных популяционных параметров: Как численность популяции, так и ее выражение, отнесенное к единице пространства, не остается одинаковым во времени. Свойственные популяции процессы постоянного воспроизведения сопровождаются столь же постоянным отмиранием особей. В силу многих причин не остается неизменной и возможность заселения отдельных элементов ландшафта: «емкость угодий» меняется в сезонном и многолетнем масштабе, что определяет динамику параметров плотности населения даже при постоянном уровне репродукции. В конкретных популяциях, локализованных в определенных границах пространства, постоянно происходят процессы притока особей извне и выселения определенной части населения за пределы популяции. Все эти процессы детерминируют пульсирующий, динамический характер популяции как системы, составленной множеством отдельных организмов. Будучи представителями одного вида, организмы в составе популяции несут рад общих признаков, определяющих биологическую специфику популяции в целом и ее место в функционировании глобальных систем биологического круговорота. В то же время составляющие популяцию особи отличаются друг от друга по полу, возрасту, генетическим особенностям и месту в функциональной структуре популяции. На этой основе формируются такие фундаментальные популяционные процессы, как типы воспроизводства и смертности, масштабы и формы пространственной дисперсии, общий уровень биологической активности и др.
Основы биоценологии. Принципы взаимосвязи биоценоза и биотопа.
После разносторонних исследований к 30-м годам XX столетия определились основные теоретические представления в области биоценологии: о границах и структуре биоценозов, степени устойчивости, возможности саморегуляции этих систем. Углублялись исследования типов взаимосвязей организмов, лежащих в основе существования биоценозов. Проблему взаимодействия живых организмов с неживой природой подробно разработал В. И. Вернадский в 1926 году, подготовив условия для понятия единого целого биологических организмов с физической средой их обитания.
Часть экологии, которая исследует закономерности сложения сообществ и совместной жизни в них живых организмов, называется синэкологией, или биоценологией.
Объектами экологических исследований могут быть отдельные виды (аутоэкология), популяции вида (популяционная экология), сообщества организмов (синэкология, или биоценология, геоботаника), биосфера (глобальная экология). При изучении таксономических групп выделяют экологию растений, грибов, насекомых, рыб, птиц, млекопитающих и т.д. Недавно сформировалось особое направление — экология человека. Однако в этой научной дисциплине важнейшее место занимают социальные проблемы и соответственно применяют особые методы исследований, поэтому она не может быть отнесена только к биологическим наукам.
Специфическая задача экологии состоит в изучении живой природы на уровне экологических систем. Соответственно с этим основным и ведущим ее разделом следует считать синэкологию, или биоценологию, т. е. учение о сообществах растений, животных и микроорганизмов в их взаимодействии друг с другом и с неорганической средой обитания. В настоящее время биоценология переросла в науку об экосистемах, которую применительно к биоценозам суши обычно называют биогеоценологией.
Общая экология классифицируется по уровням организации надорганизменных систем. Популяционная экология изучает популяции — совокупности особей одного вида, объединяемых общей территорией и генофондом. Экология сообществ (биоценология) исследует структуру и динамику природных сообществ (ценозов) — совокупностей совместно обитающих популяций разных видов. Биогеоценология — раздел общей экологии, изучающий экосистемы (биоценозы)
Менее наглядна принадлежность к собственно антропогенным ландшафтам возделанных полей, культурных пастбищ, садов.[
В развитие общей экологии значительный вклад внес Д. Н. Кашкаров (1878— 1941). Ему принадлежат такие книги, как «Среда и общество», «Жизнь пустыни». Он является автором первого в нашей стране учебника по основам экологии животных (1938). По инициативе Д. Н. Кашкарова регулярно издавался сборник «Вопросы экологии и биоценологии».
Наиболее четкое оформление экологии как самостоятельной научной дисциплины связано с опубликованием в 1895 г. «Экологической растительной географии» Е. Варминга. В первой половине XX в. достигла расцвета биоэкология. Решающее значение имел переход от экологии отдельного организма — аутэкологии к изучению популяций и многовидовых природных сообществ растений и животных — синэкологии и биоценологии. Основы математической экологии были заложены работами А. Лотка (1925) и В. Волътерра (1926). Заметный вклад в экологию внесен трэдами Н.И. Калабухова (1946), АД. В развитии теоретической экологии существенную роль сыграли работы Н.В. Тимофеева-Ресовского (1968) и A.A. Любищева (1972).
Различают два основных типа биоценозов: естественный и антропогенный. Первый тип - это биотическое сообщество, в функционировании которого отсутствует влияние деятельности человека. Второй тип (или агробиоценоз) - это неустойчивая, искусственно созданная и регулярно поддерживаемая человеком экосистема культурных полей (поля, искусственные пастбища, сады, виноградники и т.п.). Кт.т0. ценоз является объектом изучения биоценологии -науки, которая исследует закономерности жизни организмов в природных сообществах, их популяционную структуру, потоки энергии и круговорот веществ.
Произошло и смешение понятий «сообщество» и «биоценоз». Первое объединение может состоять из одних продуцентов (фитоценоз), кон-сументов (зооценоз) или микроорганизмов (микробиоценоз). Биоценоз же в классическом понимании — системно-функциональная совокупность продуцентов, консументов и редуцентов, т. е. экологически многокомпонентное образование (таков даже биоценоз мышиной норы или болотной кочки). Видимо, термин «синэкология» целесообразно сохранить за экологией сообществ, а экологию биоценозов называть биоценологией. Учение о биосфере — биосферология, а учение о среде формирования биосферы — глобальная экология, или экосферология.
В связи с проблемой загрязнения среды и преобразования ее человеком возникли новые комплексные отрасли науки, называемые фитогигиеной и зоогигиеной, являющиеся частью общей и сравнительной гигиены. Содержание фитогигиены — всестороннее исследование закономерностей обеспечения здоровья растительных организмов с целью его сохранения, улучшения и искусственной регуляции. Научной базой зоо- и фитогигиены считают, в частности, такие новые отрасли науки, как техногенная фитопатология, промышленная ботаника, экологическая токсикология, индустриальная биоценология и др.
Принцип системной организации вполне применим и к живой природе. Растения и животных, в том числе сельскохозяйственных, изучают на молекулярном, клеточном, тканевом, органном, организменном, популяционном, биоценозном и биогеоценозном (экосистемном) уровнях.
Уже в 30-е годы в экологических работах наряду с абиотическими и биотическими стали выделять особый фактор, воздействующий на тот или иной вид через изменения как физико-химических характеристик, так и состояния биологических компонентов среды. Это — воздействие на природные условия человеческой деятельности, почему и был этот фактор назван антропогенным. Исследования биотических взаимоотношений, прослеживая взаимосвязи отдельных видов друг с другом, естественно развивались в изучение систем взимосвязанных организмов, или сообществ растений, животных, грибов, микроорганизмов. Такие сообщества, или биоценозы, стали предметом изучения биоценологии, или синэкологии — раздела экологии, занимающегося взаимодействиями в сообществах живых организмов. Исследования сложных биоценозов показывали неразрывность абиотических и биотических условий существования сообществ живых организмов на конкретной территории, что отразилось в изменении названия этого раздела экологии, который чаще и правильнее называют биогеоценологией. В развитие этой ветви экологии большой вклад внесла школа академика В. П. Сукачева.
Данная задача давно привлекает внимание и лесоводов, и деятелей охотничьего хозяйства Западной Европы в том случае, когда они не представлены в одном лице. Обычно осуществляют меры защиты насаждений и охотхозяйственные мероприятия разного рода: подкормку, регулирование численности и структуры популяций и т. д. В первую очередь, это связано с дефицитом в лесах природных кормов. В лесном хозяйстве, как правило, запросы и интересы охотничьего хозяйства не учитываются. Обычно вполне отчетливо представляют себе, каким должен быть лес для наиболее эффективного комплексного его использования, мало того, одновременно в интересах рационального лесоводства. Но далее этого дело не идет. Вот уже не один десяток лет, как принцип «Оауег уа1(Га» на практике не реализуется. Причина в неизбежном при этом некотором снижении доходности от эксплуатации древесины. Здесь коммерческий интерес сегодняшнего дня не проникает глубоко в экономический анализ данной проблемы. Как отмечают некоторые крупные специалисты, дичеразведение ошибочно пытаются строить на принципах животноводства, выращивая и выкармливая копытных зверей для достижения ими определенных желаемых кондиций, без учета основ биоценологии и экологии.
Биоценоз и биотоп невозможно оторвать друг от друга, об этом свидетельствует ряд принципов их взаимосвязи:
1. Принцип разнообразия (А. Тинеман): чем разнообразнее условия биотопа, тем больше видов в биоценозе.
Примером проявления этого принципа может служить тропический лес. Здесь в условиях крайнего разнообразия условий среды жизни в биоценозы входит огромное число видов и трудно встретить место, где бы рядом росли два растения одного вида.
2. Принцип отклонения условий (А. Тинеман): чем выше отклонения условий биотопа от нормы, тем беднее видами и специфичнее биоценоз, а численность особей отдельных составляющих его видов выше. Этот принцип проявляется в экстремальных биотопах, например местах интенсивного загрязнения среды. В них мало видов, но число особей в них обычно велико, может иметь место даже вспышка массового размножения организмов.
3. Принцип плавности изменения среды (Г.М. Франц): чем более плавно изменяются условия среды в биотопе и чем дольше он остается неизменным, тем богаче видами биоценоз и тем более он уравновешен и стабилен. Практическое значение в том, что, чем больше и быстрее происходит преобразование природы и биотопов, тем труднее видам успеть приспособиться к этому преобразованию, а, следовательно, биоценозы ими обедняются.
Основные типы взаимоотношений видов в биоценозе. Правило конкурентного исключения.
Типы взаимоотношений организмов в биоценозе
Вид 1 |
Вид 2 |
Тип взаимоотношений |
Характеристика |
|
|
Нейтрализм |
Ни один вид не влияет на другой |
- |
|
Аменсализм |
Вид 2 подавляет вид 1, но сам не испытывает отрицательного влияния |
+ |
- |
Хищничество |
Все варианты пищевых взаимоотношений (включая связи между растениями и травоядными) |
+ |
- |
Паразитизм |
Организм-паразит 1 использует тело живого организма организма-хозяина 2 как источник пищи и место обитания |
- |
- |
Конкуренция |
Взаимное подавление обоих видов |
+ |
|
Комменсализм |
Вид 1 (комменсал) получает пользу от взаимодействия, а виду 2 это взаимодействие безразлично |
+ |
+ |
Мутуализм (симбиоз) |
Взаимодействие благоприятно для обоих видов и обязательно |
+ |
+ |
Протокооперация |
Взаимодействие благоприятно для обоих видов, но не обязательно |
Экологическая ниша
Экологическая ниша - место организма в природе и весь образ его жизнедеятельности, жизненный статус, включающий отношение к факторам среды, видам пищи, времени и способу питания, местам размножения и укрытий и т.д. Если организмы занимают разные экологические ниши, они не вступают в конкурентные отношения (сферы их деятельности и влияния разделены). Эти отношения называются нейтральными.
Правило конкурентного исключения (закон Гаузе)
Если два вида со сходными требованиями к среде (отношение к питанию, поведению, местам размножения, и т.д.) вступают в конкурентные отношения, то один должен либо погибнуть, либо изменить свой образ жизни и занять новую нишу. Сообщества (экосистемы, биоценозы) формируются по принципу заполнения экологических ниш, и в природном сообществе обычно все ниши заняты.
Понятие об экологической нише. Механизм образования экологических ниш.
Экологи́ческая ни́ша— место, занимаемое видом в биоценозе, включающее комплекс его биоценотических связей и требований к факторам среды. Термин введён в 1914 году Дж. Гриннеллом и в 1927 году Чарльзом Элтоном. В настоящее время определение Гриннелла принято называть пространственной нишей (по смыслу термин ближе понятиюместообитание), а определение Элтона называют трофической нишей (экологическая ниша представляет собой сумму факторов существования данного вида, основным из которых является его место в пищевой цепочке). В настоящее время доминирует модель гиперобъёма Дж. Э. Хатчинсона. Модель представлена как n-мерный куб, на осях которого отложены экологические факторы. По каждому фактору у вида есть диапазон, в котором он может существовать (экологическая валентность). Если провести проекции от крайних точек диапазонов каждой оси факторов, мы получим n-мерную фигуру, где n— количество значимых для вида экологических факторов. Модель в основном умозрительна, но позволяет получить хорошее представление об экологической нише. По Хатчинсону экологическая ниша может быть:
фундаментальной— определяемой сочетанием условий и ресурсов, позволяющим виду поддерживать жизнеспособную популяцию;
реализованной— свойства которой обусловлены конкурирующими видами.
Допущения модели:
Реакция на один фактор не зависит от воздействия другого фактора;
Независимость факторов друг от друга;
Пространство внутри ниши однородное с одинаковой степенью благоприятности.
Это различие подчёркивает, что межвидовая конкуренция приводит к снижению плодовитости и жизнеспособности и что в фундаментальной экологической нише может быть такая часть, занимая которую вид в результате межвидовой конкуренции не в состоянии больше жить и успешно размножаться. Эта часть фундаментальной ниши вида отсутствует в его реализованной нише. Таким образом, реализованная ниша всегда входит в состав фундаментальной или равна ей.
Экологическая ниша не может быть пустой. Если ниша пустеет в результате вымирания какого-то вида, то она тут же заполняется другим видом.
Среда обитания обычно состоит из отдельных участков («пятен») с благоприятными и неблагоприятными условиями; эти пятна нередко доступны лишь временно, и возникают они непредсказуемо как во времени, так и в пространстве.
Свободные участки или «бреши» в местообитаниях возникают непредсказуемо во многих биотопах. Пожары или оползни могут приводить к образованию пустошей в лесах; шторм может оголить открытый участок морского берега, а прожорливые хищники где угодно могут истребить потенциальных жертв. Эти освободившиеся участки неизменно заселяются вновь. Однако самыми первыми поселенцами не обязательно будут те виды, которые в течение длительного времени способны успешно конкурировать с другими видами и вытеснять их. Поэтому сосуществование преходящих и конкурентоспособных видов возможно так долго, как с подходящей частотой появляются незаселенные участки. Преходящий вид обычно первым заселяет свободный участок, осваивает его и размножается. Более конкурентоспособный вид заселяет эти участки медленно, но если заселение началось, то со временем он побеждает преходящий вид и размножается.
Экосистема. Классификация экосистем.
Экосисте́ма, или экологи́ческая систе́ма — биологическая система, состоящая из сообщества живых организмов (биоценоз), среды их обитания (биотоп), системы связей, осуществляющей обмен веществом и энергией между ними. Наиболее распространены два типа признаков для классификации экосистем – функциональные и структурные.
Примером классификации, основанной на функциональных признаках, можно считать деление экосистем по количеству или качеству поступающей энергии. Использование этого признака удобно по тем соображениям, что энергия является одним из основных компонентов любых экосистем, как природных, так и контролируемых человеком.
Пример классификации, основанной на структурных признаках – деление экосистем по биомам. Биом – совокупность сообществ, возникшая в результате взаимодействия регионального климата, биоты и субстрата. Основа классификации этого типа- заметные, постоянные макроструктурные черты. В наземных экосистемах таким признаком является растительность, которая отражает особенности организмов, климатических, почвенных, гидрологических условий.
В зависимости от природных и климатических условий можно выделить следующие типы природных экосистем (по Ю.Одуму):
Наземные биомы:
тундра, арктическая и альпийская;
бореальные хвойные леса;
листопадный лес умеренной зоны;
тропический грасленд и саванна;
чапараль – районы с дождливой зимой и засушливым лесом;
пустыня; тропическая и кустарниковая;
полувечнозеленый тропический лес: выраженный влажный и сухой;
вечнозеленый тропический дождевой лес.
Пресноводные экосистемы:
лентические (стоячие воды): озера, пруды;
лотические (текучие воды): реки, ручьи;
заболоченные угодья: болота и болотистые леса;
Морские экосистемы:
отрытый океан (пелагическая экосистема);
воды континентального шельфа (прибрежные воды);
районы анвеллинга (плодородные районы с продуктивным рыболовством);
эстуарии (прибрежные бухты, проливы, устья рек, соленые марши и т. д.).
В этой классификации наземные биомы выделяют по естественным или исходным чертам растительности, а типы водных экосистем – по гидрологическим и физическим особенностями.
Экосистема по Тенсли и биогеоценоз по В. Сукачеву – сходства и различия (нарисовать схему биоценоза)
Сходство и различия экосистемы и биогеоценоза
Учение об экосистеме возникло несколько раньше, чем учение о биогеоценозе. Основоположником его принято считать английского геоботаника А. Г. Тенсли (1935), который высказал следующие два положения:
а) организмы нельзя отделить от окружающей их среды, ибо вместе с нею они составляют единую физическую систему;
б) такого рода системы являются основными единицами природы на земной поверхности.
Эти основные единицы природы Тенсли и предложил называть экосистемами.
Экосистема по Тенсли - это сложное природное образование, состоящее из двух компонентов:
1) комплекса организмов, именуемого биосистемой (биота), и
2) комплекса факторов абиотической среды, так называемой физиосистемы.
Он дал и определение понятия: экосистема - это «относительно устойчивая система динамического равновесия, в которой организмы и неорганические факторы являются полноправными компонентами»
Более современное определение экосистемы привел Уиттекер в 1980 г.: «Сообщество и его среда, рассматриваемые совместно как функциональная система, образующая единое целое и характеризуемая присущим ей потоком энергии и круговоротом вещества, называетсяэкосистемой».
В современных определениях экосистемы по сравнению с первоначальным подчеркивается функциональный характер ее как системы и обращается внимание на обмен веществ и энергии в ней как основной процесс ее функциональной деятельности.
Экосистемы могут быть различных размеров, различного объема, протяженности, например: озеро, лесной массив со всем населением живых существ, а с другой стороны - аквариум с рыбками, водными растениями (элодеей, валиснерией) или пень дерева в лесу с насекомыми, микроорганизмами и пр. Это понятие может объединять природные системы разного объема, ранга и разного содержания: от капли воды до экосистемы, охватывающей всю поверхность суши или водные массы Мирового океана. рассматривать и отдельный муравейник, и всю биосферу в целом.
Учитывая это, П. Дювиньо и М. Танг (1968) все экосистемы мира по их объему, протяженности подразделили на три категории:
а) микроэкосистемы (например, пень дерева, аквариум);
б) мезоэкосистемы (лесное сообщество, пруд);
в) макроэкосистемы (лесной покров Земли, Мировой океан). Объединение же всех экосистем мира, по их выражению, составляет «гигантскую экосистему земного шара» - мегаэкосистему.
Возникновение и развитие биогеоценологии в нашей стране прошло в 1940 - 1947 гг. В. Н. Сукачев в своих статьях, опубликованных в 1940 и 1942 гг. пришел к выводу, что растительный покров находится во взаимосвязи и взаимодействии с другими географическими явлениями, такими, каклитосфера, атмосфера и гидросфера, вместе с которыми он и развивается. В результате взаимодействия биологических и географических явлений на поверхности Земли возникает новое явление – биоценоз, состоящее из растений и животных. Кроме того, поскольку завершение цикла обмена веществ в биогеоценозе и бесперебойное функционирование его возможны лишь при условии разложения, В. Н. Сукачев в состав живых компонентов биогеоценоза, наряду с растениями и животными, включил микробоценоз.. В результате этого схема компонентного состава биогеоценоза, соотношения и взаимосвязи живых и косных компонентов в нем приобрела вид, изображенный на рис. 2. Биогеоценоз по В. Н. Сукачеву является объектом изучения особой науки - биогеоценологии. Биогеоценология как самостоятельная науки, занимает место на стыке биологии и географии, но ближе стоит к биологии. При этом ведущая активная роль в процессах взаимодействия его компонентов принадлежит живым существам.
Рис. 2. Схема состава сухопутного биогеоценоза по В.Н.Сукачеву
Основные компоненты экосистем. Принципы функционирования экосистем.
Компоненты экосистемы
В экосистеме можно выделить два компонента – биотический и абиотический. Биотический делится на автотрофный (организмы, получающие первичную энергию для существования из фото- и хемосинтеза или продуценты) и гетеротрофный (организмы, получающие энергию из процессов окисления органического вещества – консументы и редуценты) компоненты, формирующие трофическую структуру экосистемы. Единственным источником энергии для существования экосистемы и поддержания в ней различных процессов являются продуценты, усваивающие энергию солнца. Солнечная энергия поглощается в биосфере неравномерно. Энергия солнца поглощается лишь частично, и на каждый новый трофический уровень переходит лишь около 10% (Правило Линдемана), что обуславливает ограниченную длину цепей питания (обычно 5–6 уровней), соответственно можно сказать что на долю консументов приходится значительно меньше энергии, чем на долю плотоядных, плотоядных – меньше чем фитофагов и т.д. Каждая экосистема характеризуется присущей ей совокупностью свойств и структурой. С точки зрения структуры в экосистеме выделяют: 1. Климатический режим, определяющий температуру, влажность, режим освещения и прочие физические характеристики среды. 2. Неорганические вещества, включающиеся в круговорот. 3. Органические соединения, которые связывают биотическую и абиотическую части в круговороте вещества и энергии. 4. Продуценты – автотрофные организмы, создающие первичную продукцию. 5. Консументы – гетеротрофы, поедающие другие организмы (хищные) или крупные частицы органического вещества. 6. Редуценты – гетеротрофы, в основном грибы и бактерии, которые разрушают мёртвое органическое вещество, минерализуя его, тем самым возвращая в круговорот. Последние три компонента формируют биомассу экосистемы. С точки зрения функционирования экосистемы выделяют следующие функциональные блоки организмов (помимо автотрофов): 1. Биофаги – организмы, поедающие других живых организмов. 2. Сапрофаги – организмы, поедающие мёртвое органическое вещество. Данное разделение по типу питания обеспечивает круговорот биовещества в экосистеме. Между отмиранием органического вещества и повторным включением его составляющих в круговорот вещества в экосистеме может пройти существенный промежуток времени, например, в случае соснового бревна, 100 и более лет. Все эти компоненты взаимосвязаны в пространстве и времени и образуют единую структурно-функциональную систему. Среди составляющих также выделяют экотоп, климатоп, эдафотоп, биотоп и биоценоз. Экотоп – территория (или акватория) местообитания организмов, характеризующееся определённым сочетанием экологических условий: почв, грунтов, микроклимата и т.д., при этом не измененная деятельностью организмов (новообразованные формы рельефа). Климатоп – воздушная (или водная) часть экосистемы, отличающаяся от окружающей своим составом, воздушным (водным) режимом, влажностью (соленостью) и / или другими параметрами. Эдафотоп – почва, как часть среды преобразуемой организмами. Биотоп – преобразованный биотой экотоп или, более точно, участок территории, однородный по условиям жизни для определённых видов растений или животных, или же для формирования определённого биоценоза. Биоценоз – исторически сложившаяся совокупность растений, животных, микроорганизмов, населяющих участок суши или водоёма (биотоп). Биоценозы ограничиваются распределением детерминантов (определителей) зооценозов (консорций – популяций растений вместе с сопровождающими их организмами), в которых доминирующие виды растений создают условия для жизни других организмов.
Принципы функционирования экосистем.
Первый признак функционирования экосистем:
Получение ресурсов и избавление от отходов происходят в рамках круговорота всех элементов. Этот принцип гармонирует с законом сохранения массы. Поскольку атомы не возникают, не исчезают и не превращаются один в другой, они могут использоваться бесконечно в самых различных соединениях и запас их практически неограничен. Именно это и происходит в природных экосистемах. Очень важно подчеркнуть, однако, что биологический круговорот не совершается исключительно за счет вещества, поскольку он - результат деятельности организмов, для обеспечения жизнедеятельности которых требуются постоянные энергетические затраты, поставляемые Солнцем. Энергия солнечных лучей, поглощаемая зелеными растениями, в отличие от химических элементов, не может использоваться организмами бесконечно. Данное заключение вытекает из второго закона термодинамики: энергия при превращении из одной формы в другую, то есть при совершении работы, частично переходит в тепловую форму и рассеивается в окружающей среде. Следовательно, каждый цикл круговорота, зависящий от активности организмов и сопровождаемый потерями энергии из них, требует все новых поступлений энергии. Итак, существование экосистем любого ранга и вообще жизни на Земле обусловлено постоянным круговоротом веществ, который, в свою очередь, поддерживается постоянным притоком солнечной энергии. В этом состоит второй основной принцип функционирования экосистем:
Экосистемы существуют за счет не загрязняющей среду и практически вечной солнечной энергии, количество которой относительно постоянно и избыточно.
Видовая структура экосистем. Консорции.
Видовая структура экосистем. Под видовой структурой понимается количество видов, образующих экосистему, и соотношение их численностей. Точных данных о количестве видов в экосистемах нет. Это связано с тем, что трудно учесть видовое разнообразие всех мелких организмов (особенно микроорганизмов). Оно исчисляется сотнями и десятками сотен. Видовое разнообразие обычно тем значительнее, чем богаче условия (биотоп) экосистемы. В этом отношении самыми богатыми по видовому разнообразию являются, например, экосистемы дождевых тропических лесов. Только древесные виды исчисляются в них сотнями.
Богатство видов зависит также от возраста экосистем. Молодые экосистемы, возникающие, например, на таком изначально безжизненном субстрате, как отвалы пород, извлекаемые из глубинных слоев земной коры при добыче полезных ископаемых, крайне бедны видами. В дальнейшем по мере развития экосистем их видовое богатство увеличивается. Но в хорошо сформировавшихся экосистемах оно может несколько уменьшаться. К тому времени обычно выделяется один или 2-3 вида, которые явно преобладают по численности особей. Например, в еловом лесу - ель, в смешанном - ель, береза и осина, в степи - ковыль и типчак. Эти виды занимают большую часть пространства, оставляя меньше места для других видов.
Виды, явно преобладающие по численности особей, носят название доминантных (лат. доминантис - господствующий). Наряду с доминантами в экосистемах выделяются виды-эдификаторы (лат. эдификатор - строитель). К ним относят те виды, которые являются основными образователями среды. Обычно вид-доминант одновременно является и эдификатором. Например, ель в еловом лесу наряду с доминантностью обладает высокими эдификаторными свойствами. Они выражаются в ее способности сильно затенять почву, создавать кислую среду своими корневыми выделениями и при разложении мертвого органического вещества, образовывать специфические для кислой среды подзолистые почвы. Вследствие высоких эдификаторных свойств ели под ее пологом могут жить только виды растений, которые способны мириться со скудным освещением (теневыносливые и тенелюбивые). В то же время под пологом елового леса доминантным видом может быть, например, черника, но она не является существенным эдификатором.
Видовое разнообразие - очень важное свойство экосистем. С ним, как отмечалось выше, связана устойчивость систем к неблагоприятным факторам среды. Разнообразие обеспечивает как бы подстраховку, дублирование устойчивости. Вид, который присутствует в числе единичных экземпляров, при неблагоприятных условиях для широко представленного вида, в том числе и доминантного, может резко увеличить свою численность и таким образом заполнить освободившееся пространство (экологическую нишу), сохранив экосистему как единое целое.
Видовую структуру обычно используют для оценки условий местопроизрастания по растениям-индикаторам. Так, для лесной зоны кислица указывает на условия увлажнения, близкие к оптимальным, и значительное богатство почв питательными минеральными веществами; черника - на несколько избыточное увлажнение и некоторый дефицит элементов минерального питания; брусника - на дефицит увлажнения и почвенного плодородия; мхи (кукушкин лен и особенно сфагнум) - на чрезмерно избыточное увлажнение, дефицит минеральных веществ, недостаток кислорода для дыхания корней и наличие процессов торфообразования. Наряду с индикаторами меняется состав и других видов, произрастающих под пологом эдификаторов.
Консорция - это совокупность видов, связанных между собой трофическими и топическими связями, которые зависят от центрального члена консорции (ядра группировки). В качестве ядра выступает автотрофный организм — эдификаторы (растение), а компонентами консорции — животные, микроорганизмы, грибы, которые непосредственно с ним связанные. Например, дуб и его обитатели.
Пространственная структура биоценоза. Ярусность, мозаичность.
Пространственная структура определяется расположением особей разного вида относительно друг друга в вертикальном и горизонтальном направлениях.
Распределение видов по вертикали выражается в форме ярусности, что обеспечивает более полное использование среды и как следствие более высокую продуктивность. Наиболее отчетливо она выражена в лесах, где можно выделить: наземный ярус, состоящий в основном из мхов и лишайников; травянистый ярус; ярус кустарников и, наконец – древесный, состоящий из высоких деревьев. На ярусность растительности накладывается соответствующее расположение фауны, хотя оно не выражено столь отчетливо. В почве также можно выделить горизонты по степени насыщенности корнями.
Прежде всего четко определяется вертикальное ярусное строение в лесах умеренного и тропического поясов. Например, в широколиственных лесах можно выделить 5—6 ярусов: первый— деревья первой величины (дуб, липа, вяз);второй— деревья второй величины (рябина, яблоня, груша, черемуха и др.);третий— подлесок кустарниковый (крушина, жимолость, бересклет и др.);четвертыйсостоит из высоких трав,а пятый и шестой, соответственно, из более низких трав. Ярусность позволяет растениям более полно использовать световой поток — в верхних ярусах светолюбивые, в нижних — теневыносливые и, в самом низу, улавливают остаток света тенелюбивые растения. Ярусность выражена и в травянистых сообществах, но не столь явно, как в лесах. В вертикальном направлении, под воздействием растительности, изменяется микросреда, включая не только выравненность и повышение температуры, но и изменение газового состава за счет изменений направления потоков углекислого газа ночью и днем, выделения сернистых газов хемосинтезирующими бактериями и т. п. Изменения микросреды способствуют образованию и определенной ярусности фауны — от насекомых, птиц и до млекопитающих. Помимо ярусности в пространственной структуре биоценоза наблюдается мозаичность — изменение растительности и животного мира по горизонтали. Площадная мозаичность зависит от разнообразия видов, количественного их взаимоотношения, от изменчивости ландшафтных и почвенных условий. Мозаичность может возникнуть и искусственно —- в результате вырубки лесов человеком. На вырубках формируется новое сообщество. Видовая структура биоценозов, пространственное распределение видов в пределах биотопа, во многом определяется взаимоотношениями между видами, между популяциями.
Горизонтальная структура — это размещение видов в биоценозе по горизонтали, так называемая мозаичность. Причина мозаичного размещения видов в биоценозе — неоднородность микрорельефа почв, влияние деятельности человека, влияние животных и растений. Например, чередование территории с голым грунтом и почвой, покрытой растительностью.
Мозаичность свойственна
практически всем фитоценозах, поэтому
в их пределах выделяют структурные
единицы, которые получили различные
названия: консорции, синузии, парцеллы.
Эти понятия часто встречаются в
геоботанике.
Консорция — это совокупность видов, связанных между собой трофическими и топическими связями, которые зависят от центрального члена консорции (ядра группировки). В качестве ядра выступает автотрофный организм — эдификаторы (растение), а компонентами консорции — животные, микроорганизмы, грибы, которые непосредственно с ним связанные. Например, дуб и его обитатели. Синузии — группа видов в фитоценозах, принадлежащих к близким жизненных форм. Например, датский ученый К. Раункиер предложил классификацию растений в зависимости от размещения почек возобновления: фанерофиты (деревья, кустарники), хамефиты (мелкие кустарники высотой 10-20 см); гемикриптофиты (травянистые растения, у которых стебли, листья отмирают, а корни остается на зиму под снегом); геофиты (почки возобновления размещенные на клубнях, луковицах, корневищах); терофиты (оставляют на неблагоприятный период только семена). Если в широколиственных лесу объединить все фанерофиты (деревья и кустарники), это и будет синузии. Парцель — структурная часть горизонтального сечения биогеоценоза, которая отличается от других его частей составом своих компонентов и их свойствами. Например: в Дубраве участки дуба с наземным покровом из сныти является парцель; в другом месте дуб растет на участке, покрытая ландыш майский, — это другое парцель.
Экологическая структура биоценоза. Краевой эффект.
Экологическая структура биоценоза. Экологическая структура биоценоза представляет его состав из экологических групп организмов, которые выполняют в сообществе определенные функции.
На границах биоценозов возникает пограничный или краевой эффект – увеличение разнообразия и плотности организмов на окраинах (опушках) соседствующих сообществ и в переходных поясах между ними.
На опушках происходит более быстрая смена растительности, чем в стабильном биоценозе. Вспышки массового размножения вредителей наиболее часто наблюдаются на опушках, в переходных зонах (экотонах) между лесами и степями (в лесостепях), между лесом и тундрой (в лесотундрах) и т.д.
Под экологической нишей вида понимают образ жизни, и прежде всего, способ питания организма. Это понятие введено с целью определения роли, которую играет тот или иной вид.
Экологическая ниша, определяемая только физиологическими особенностями организмов, называется фундаментальной, а та, в пределах которой вид реально встречается в природе – реализованной. Реализованная ниша – это та часть фундаментальной ниши, которую данный вид, популяция способны отстоять в конкурентной борьбе.
Необходимо подчеркнуть, что у совместно живущих видов экологические ниши могут частично перекрываться, но полностью никогда не совпадают, иначе при этом вступает в действие закон конкурентного исключения и один вид вытесняет другой из данного биоценоза. Если же по какой-то причине, например в результате гибели организмов одного вида, «освобождается» экологическая ниша, проявляется правило обязательности заполнения экологических ниш: пустующая экологическая ниша всегда бывает естественно (!) заполнена. Многие ученые считают поэтому, что не следует питать чрезмерного оптимизма в отношении легкости заполнения пустующих ниш путем акклиматизации (интродукции) видов, представляющих практический интерес для человека. Налицо довольно много примеров печального опыта «исправления» природы. Так, вместе с дальневосточной пчелой, которую акклиматизировали в европейской части СССР, были занесены клещи, явившиеся в дальнейшем причиной гибели множества пчелосемей.
Менее организованные, но более способные к мутации виды часто вытесняют более организованные виды, занимая их экологические ниши. При этом новые виды нередко оказываются, во-первых, весьма агрессивными и трудно уничтожимыми за счет своей высокой изменчивости (как это произошло с вирусом СПИДа, который пришел на смену вирусам кори, скарлатины и др.), а во-вторых, более мелкими по размеру особями. Так, исчезающих в степях копытных животных, функциями которых являлись поедание и частичная переработка растительности, что облегчало ее дальнейшее разложение редуцентами, могут заменить грызуны и растительноядные насекомые.
Краевойэффект: тенденция увеличения разнообразия, или численности видов в экотонах, т. е. на переходных границах между биоценозами, или ценоэкосистемами.
Функциональная структура биоценозов. Разнообразие организмов по способам питания и получения энергии (привести примеры).
Основой фоpмиpования и функционpования биогеоценозов, а следовательно и экосистем, являются пpодуценты - pастения и микpооpганизмы, способные пpоизводить (пpодуциpовать) из неоpганического вещества оpганическое, используя энеpгию света или энергию, заключенную в химических связях соединений.
Продуценты производят чистую первичную продукцию, обусловленную приростом биомассы, и валовую первичную продукцию, в которую входит общее количество продуцируемой в ходе фотосинтеза органики, включая энергию израсходованную на жизнедеятельность (например, на дыхание и выделение ароматических веществ). При этом первичной продуктивностью называют биомассу, а также энергию и летучие биогенные вещества, производимые продуцентами на единице площади за единицу времени.
По способу питания живые организмы можно разделить на две большие группы: автотрофы и гетеротрофы.
Автотрофы
Автотрофы— живые организмы, синтезирующие органические соединения из неорганических. Автотрофы составляют первый ярус в пищевой пирамиде (первые звенья пищевых цепей). Именно они являются первичными продуцентами органического вещества в биосфере, обеспечивая пищей гетеротрофов. Следует отметить, что иногда резкой границы между автотрофами и гетеротрофами провести не удается. Например, одноклеточная эвглена на свету является автотрофом, а в темноте - гетеротрофом. Автотрофы делятся на фототрофов и хемотрофов.
Фототрофы
Организмы, для которых источником энергии служит солнечный свет, называются фототрофами. Такой тип питания называется фотосинтезом.
Хемотрофы
Остальные организмы в качестве внешнего источника энергии используют энергию химических связей пищи или восстановленных неорганических соединений - таких, как сероводород, метан, сера. двухвалентное железо и др. Такие организмы называются хемотрофы. Все фототрофы-эукариоты одновременно являются автотрофами. а все хемотрофы-эукариоты - гетеротрофами. Среди прокариот встречаются и другие комбинации. Так, существуют хемоавтотрофные бактерии, а некоторые фототрофные бактерии являются гетеротрофами.
Гетеротрофы
Гетеротрофы — организмы, которые не способны синтезировать органические вещества из неорганических. Для синтеза необходимых для своей жизнедеятельности органических веществ им требуются органические вещества, произведённые другими организмами. В процессе пищеварения пищеварительные ферменты расщепляют полимеры органических веществ на мономеры. В сообществах гетеротрофы — это консументы различных порядков и редуценты.
Венерина мухоловка — миксотроф: в её вегетативных органах идёт процесс фотосинтеза, но растение также ловит и переваривает насекомых.
Миксотрофы
Некоторые организмы (например, хищные растения) сочетают в себе признаки как автотрофов, так и гетеротрофов. Такие организмы называются миксотрофами.
Литотрофы и органотрофы
Эта классификация основана на делении организмов по донорам (источникам) электронов, необходимых для многих клеточных процессов. Литотрофы — организмы, для которых донорами электронов являются неорганические вещества. Органотрофы — организмы, для которых источниками электронов являются органические соединения.
Уровни биологической продуктивности экосистем: первичная и вторичная продукция. Экологическая эффективность.
Продуктивность экосистем. Первичная и вторичная продукция Любую совокупность организмов и неорганических компонентов окружающей их среды, в которой может осуществляться круговорот веществ, называют экологической системой или экосистемой. Экосистема, или экологическая система - биологическая система, состоящая из сообщества живых организмов (биоценоз), среды их обитания (биотоп), системы связей, осуществляющей обмен веществом и энергией между ними. Одно из основных понятий экологии. Пример экосистемы - пруд с обитающими в нём растениями, рыбами, беспозвоночными животными, микроорганизмами, составляющими живую компоненту системы, биоценоз. Каждая экосистема обладает определенной продуктивностью. Продуктивность экологической системы – это скорость, с которой продуценты усваивают лучистую энергию солнца в процессе фотосинтеза, образуя органическое вещество. Различают разные уровни продуцирования, на которых создается первичная и вторичная продукция. Органическая масса, создаваемая продуцентами в единицу времени, называется первичной продукцией, а прирост за единицу времени массы консументов – вторичной продукцией. Все живые компоненты экосистемы – продуценты, консументы, редуценты составляют общую биомассу (живой вес). Биомассу обычно выражают через сухой или живой вес, но можно выражать и в энергетических единицах – калориях, джоулях. Трофические структуры можно выразить графически в виде экологических пирамид. Основанием пирамиды служит уровень продуцентов, а последующие уровни питания образуют этажи и вершину пирамиды. Известны три основных типа экологических пирамид: 1) пирамиды биомассы, характеризующие массу живого вещества на каждом уровне; 2) пирамиды энергии, показывающие, изменение энергии на последующих трофических уровнях; 3) пирамиды чисел, отражающие численность организмов на каждом уровне. В наземных экосистемах суммарная масса растений превышает массу всех растительноядных, а их масса превышает всю биомассу хищников. Для экосистемы океана пирамида биомассы имеет перевернутый вид, т. е характерна тенденция накапливания биомассы на более высоких уровнях. Пирамиду чисел рекомендуют приводить в табличной форме. Более совершенной является пирамида энергии, она отражает расходование энергии в трофических цепях. Знание энергетики экосистемы и количественных ее показателей позволяют точно учесть возможность изъятия из природной экосистемы того или иного количества растительной и животной биомассы без подрыва ее эффективности. Органические вещества, образованные продуцентами в процессе фотосинтеза или хемосинтеза, называются первичной продукцией. Биомасса, образованная за определенный промежуток времени редуцентами и консументами экосистемы, называетсявторичной продукцией. Первичная продукция делится на два вида: первичная общая продукция и первичная чистая продукция. Только небольшая часть поступающей на Землю солнечной энергии используется растениями; 44% коротковолновых излучений, выделяемых солнечной энергией, участвует в процессе фотосинтеза. Их называют активной фотосинтезирующей радиацией (излучение). Но не все активные фотосинтезирующие излучения поглощаются растениями, а только 25% энергии запасается в форме органического вещества. Эта энергия называется начальной (первичной) валовой продукцией. Большая часть начальной валовой продукции используется на дыхание растений. Например, в лесах умеренного пояса 50—60%, а в тропических лесах — 80% начальной общей продукции расходуется на дыхание. Оставшаяся энергия переходит к питающимся растениями консументам. Это так называемая чистая продукция. На чистую начальную продукцию влияют такие факторы, как фотосинтезиру- ющее активное излучение, вода, необходимая для растений, количество минеральных веществ, плодородие почвы и др. Воспроизведение биомассы всех живых организмов каждой экосистемы называется биологической продуктивностью. Биологическая продуктивность производится за определенный промежуток времени, например определяется за сезон, за год, за несколько лет. Биологическая продуктивность считается главным показателем малого круговорота веществ и энергии. Количество биологической продуктивности, образующейся в каждой последующей пищевой цепи малого круговорота веществ и энергии, меньше начальной цепи в 5—10 раз. Различна и образующаяся биомасса биологической продуктивности каждой экосистемы. Например, луговые степи дают больший годовой прирост биомассы, чем хвойные леса. Популяция мелких млекопитающих по сравнению с крупными обладает большей скоростью роста и размножения и дает более высокий прирост при равной биомассе. Если воспроизведение биологической продуктивности в тундре и пустыне мало, то в тропических лесах оно очень высокое. Общий перечень элементов экосистемы включает: 1. Неорганические вещества (азот, кислород, углекислый газ, вода и т.д.), содержащиеся в виде газов, жидкости и ингредиентов субстрата. 2. Органические соединения (белки, углеводы, липиды, гумус и т.д.), содержащиеся в живых организмах и отчасти в субстрате. 3. Субстрат - среда или основа, в которой постоянно обитают и развиваются организмы (верхний слой литосферы, гидросферы и ее донные отложения, отчасти атмосфера). 4. Автотрофы или продуценты, т.е. организмы, способные к фото- или хемосинтезу и являющиеся создателями органических веществ из неорганических. 5. Гетеротрофы или консументы, т.е. потребители органического вещества. 6. Редуценты, чаще всего являющиеся микроконсументами, разлагающими мертвое органическое вещество и превращаюшие его в неорганическое, которое способны усваивать продуценты. Различается несколько видов консументов - травоядных (или первичных) и плотоядных (или вторичных). Вторичные консументы могут быть нескольких порядков (ежик – лиса – волк - медведь). Последним биологическим компонентом экосистемы являются редуценты, которые в основном представлены микроорганизмами. Энергетическая классификация экосистем различает 4 типа: 1) природные несубсидированные экосистемы, получающие энергию только от Солнца (открытые океаны, глубокие озера, высокогорные леса); 2) природные экосистемы, субсидируемые Солнцем и другими естественными источниками (дождевые леса, приливные зоны и т.д.); 3) природные зоны, субсидируемые человеком и Солнцем (агрозкосистемы, аква-культура); 4) зоны, получавшие энергию от других экосистем в виде питания и топлива (города или урбанизированные территории). Экологическая эффективность
(характеристики экологичности) СИСТЕМЫ УПРАВЛЕНИЯ ОКРУЖАЮЩЕЙ СРЕДОЙ измеряемые результаты системы управления окружающей средой, связанные с контролированиеморганизацией экологических аспектов, основанных на ее экологической политике, а также на целевых иплановых экологических показателях.
Пищевые цепи и сети. Экологические пирамиды.
Пищевые цепи и сети:
Пищевая цепь - это перенос энергии пищи от её источника – растений – через ряд организмов, происходящий путем поедания одних организмов другими (Одум, 1975)
Понятие пищевая сеть относится к сложно переплетенным трофическим взаимоотношениям между популяциями различных видов в биоценозе. Изучение пищевой сети очень сложно и возможно лишь по установлению отдельных основных деталей. С другой стороны, установлена возможность объединения обширных групп животных организмов в отдельные звенья единой цепи питания. Пищевая цепь расценивается как важнейшая функциональная структурная единица функциональной организации биоценоза и биогеоценоза в целом.
Установлено, что животные в пищевой цепи представлены не одной, а двумя или тремя звеньями. В пищевой цепи обычно выделяют три или четыре уровня автотрофы-фитофаги-зоофаги 1 порядка - зоофаги 2 порядка. Отдельно может выделяться наземное звено трупоядов, или мусорщиков.
Классификация цепей питания по разным авторам различается.
Так, по Дж.Вудвеллу различаются цепи выедания и цепи разложения.
По Ю.Одуму различается пастбищная цепь и детритная цепь.
По П.Дювиньо и М.Тангу - цепи хищников, цепи паразитов, цепи сапрофагов.
По Р.Дажо цепи хищников и цепи паразитов слиты в одну цепь и вводится ещё одно звено- деструкторы, или разрушители. Эта детритная цепь состоит из двух звеньев-детрит и консументы детрита.
Понятие Трофический уровень
Каждое звено цепи питания расценивается как трофический уровень. Каждый трофический уровень пищевой цепи отражает основные черты жизнедеятельности организмов, их место и роль в выполнении определенной функции в переносе вещества и энергии по цепям и в биологическом круговороте веществ всей экосистемы. Энергетическим материалом для функционирования трофических уровней служит биомасса организмов предыдущих трофических уровней или продукты их метаболизма и деструкции отмерших остатков"отбросов и трупов. Таким образом, с энергетической точки зрения, трофический уровень представляет собой открытую систему, внутренняя структура которой характеризуется определенными характеристиками входа и выхода как с качественной, так и количественной(скоростной) стороны.
При переносе энергии с одного трофического уровня на другой большая её часть теряется в виде тепла (до 80-90%), вследствие чего количество звеньев в пищевой цепи не может быть более 4-5. При чем в пастбищных цепях количество организмов все уменьшается, а размеры организмов увеличиваются. В детритных, наоборот, животные все уменьшаются в размерах, а количество их растет.
Из этих соображений исходит понятие правил величины особей, правила пирамиды чисел, правило биомассы, правило пирамиды энергии.
Вместе с тем, деление на трофические уровни иногда имеет большую степень условности, т. к. некоторые популяции животных могут одновременно представлять два-три трофических уровня. Нужно учитывать и то, что в биоценоза может быть не одна,а целый ряд пищевых цепей.
"Трофический уровень - это форма, в которые облекаются в ходе функционирования в составе пищевых цепей видовые ценопопуляции соответствующих ценокомплексов биогеоценотических систем».
Экологическая пирамида — графические изображения соотношения между продуцентами и консументами всех уровней (травоядных, хищников, видов, питающихся другими хищниками) в экосистеме. Эффект пирамид в виде графических моделей разработан в 1927 году Ч. Элтоном.
Выражается:
в единицах массы (пирамида биомасс),
в числе особей (пирамида чисел Элтона)
в заключенной в особях энергии (пирамида энергий).
Поток энергии в экосистемах. Энергетика экосистем. Схема протекания потока энергии по трофическим уровням.
Понятие об экосистемах. Учение о биогеоценозах
Поддержание жизнедеятельности организмов и круговорот вещества в экосистемах возможны только за счет постоянного притока энергии (рис. 146). В конечном счете вся жизнь на Земле существует за счет энергии солнечного излучения, которая переводится фотосинтезирующими организмами в химические связи органических соединений. 4етеротрофы получают энергию с пищей. Все живые существа являются объектами питания других, т. е. связаны между собой энергетическими отношениями. Пищевые связи в сообществах – это механизмы передачи энергии от одного организма к другому. В каждом сообществе трофические связи переплетены в сложную сеть. Организмы любого вида являются потенциальной пищей многих других видов. Врагами тлей, например, служат личинки и жуки божьих коровок, личинки мух‑сирфид, пауки, насекомоядные птицы и многие другие. За счет дубов в широколиственных лесах могут жить несколько сотен форм различных членистоногих, фитонематод, паразитических грибков и т. п. Хищники обычно легко переключаются с одного вида жертв на другой, а многие, кроме животной пищи, способны потреблять в некотором количестве и растительную. Таким образом, трофические сети в биоценозах очень сложные и создается впечатление, что энергия, поступившая в них, может долго мигрировать от одного организма к другому.
На самом деле путь каждой конкретной порции энергии, накопленной зелеными растениями, короток. Она может передаваться не более чем через 4–6 звеньев ряда, состоящего из последовательно питающихся друг другом организмов. Такие ряды, в которых можно проследить пути расходования изначальной дозы энергии, называют цепями питания(рис. 147).
Место каждого звена в цепи питания называют трофическим уровнем.Первый трофический уровень – это всегда продуценты, создатели органической массы; растительноядные консументы относятся ко второму трофическому уровню; плотоядные, живущие за счет растительноядных форм, – к третьему; потребляющие других плотоядных – соответственно к четвертому и т. д. Таким образом, различают консументов первого, второго и третьего порядков, занимающих разные уровни в цепях питания. Естественно, что основную роль при этом играет пищевая специализация консументов. Виды с широким спектром питания могут включаться в пищевые цепи на разных трофических уровнях. Так, например, человек, в рацион которого входит как растительная пища, так и мясо травоядных и плотоядных животных, выступает в разных пищевых цепях в качестве консумента первого, второго и третьего порядков. Виды, специализированные на растительной пище, например тли, зайцеобразные, копытные, всегда являются вторым звеном в цепях питания.
Энергетический баланс консументов складывается следующим образом. Поглощенная пища обычно усваивается не полностью. Неусвоенная часть вновь возвращается во внешнюю среду (в виде экскрементов) и в дальнейшем может быть вовлечена в другие цепи питания. Процент усвояемости зависит от состава пищи и набора пищеварительных ферментов организма. У животных усвояемость пищевых материалов варьирует от 12–20 % (некоторые сапрофаги) до 75 % и более (плотоядные виды). Ассимилированная организмом пища вместе с запасом в ней энергии расходуется двояким образом. Большая часть энергии используется на поддержание рабочих процессов в клетках, а продукты расщепления подлежат удалению из организма в составе экскретов (мочи, пота, выделений различных желез) и углекислого газа, образующегося при дыхании. Энергетические затраты на поддержание всех метаболических процессов условно называют тратой на дыхание,так как общие их масштабы можно оценить, учитывая выделение СО2организмом. Меньшая часть усвоенной пищи трансформируется в ткани самого организма, т. е. идет на рост или откладывание запасных питательных веществ, увеличение массы тела. Эти отношения сокращенно можно выразить формулой:
Р = П + Д + Н,
где Р – рацион консумента, т. е. количество пищи, съедаемой им за определенный период времени; П – продукция, т. е. траты на рост; Д – траты на дыхание, т. е. поддержание обмена веществ за тот же период; Н – энергия неусвоенной пищи, выделенной в виде экскрементов.
Передача энергии в химических реакциях в организме происходит, согласно второму закону термодинамики, с потерей части ее в виде тепла. Особенно велики эти потери при работе мышечных клеток животных, КПД которых очень низок. В конечном счете вся энергия, использованная на метаболизм, переходит в тепловую и рассеивается в окружающем пространстве.
Траты на дыхание во много раз больше энергетических затрат на увеличение массы самого организма. Конкретные соотношения зависят от стадии развития и физиологического состояния особей. У молодых траты на рост могут достигать значительных величин, тогда как взрослые используют энергию пищи почти исключительно на поддержание обмена веществ и созревание половых продуктов. Интенсивность питания снижается с возрастом. Так, ежесуточный рацион карпов массой от 5 до 15 г составляет почти 1/4от массы их тела, у более крупных особей – от 150 до 450 г – всего1/10, а у рыб массой 500–800 г –1/16.
Коэффициент использования потребленной пищи на рост (К) рассчитывают как отношение продукции к рациону:
где П – траты на рост, Р – количество пищи, съеденной за тот же период.
Двупарноногие многоножки кивсяки в период роста, который продолжается до трех лет, тратят на рост от 6 до 25 % съеденной пищи при усвояемости в среднем 30 %. В последующем их масса стабилизируется. Кивсяки живут до 12 лет. В умеренном поясе они активны 4–5 месяцев в году. Особь, масса которой во взрослом состоянии 0,5 г, за свою жизнь потребляет 250–300 г опада (80–90 г абсолютно сухой массы). Так как кивсяки многократно линяют, часть усвоенной энергии идет на восстановление покровов. Таким образом, отношение съеденного в течение жизни корма к массе взрослого животного составляет 500–600: 1.
У такого гетеротермного животного, как малый суслик, который активен всего 2–2,5 месяца в году, это соотношение всего около 150: 1. Средний рацион суслика 30 г сухой массы растений (или в среднем 100 г сырой) при массе зверька 200 г и продолжительности жизни 4 года. Постоянно активным в течение года рыжим полевкам нужно гораздо больше энергии для поддержания жизнедеятельности. Взрослые зверьки массой 20 г съедают в среднем до 4 г сухого корма в день. При продолжительности жизни примерно в 24 месяца затрата кормов на жизнь одной особи составляет примерно 30 кг в сырой массе, что приблизительно в 1500 раз больше массы взрослого животного.
Таким образом, основная часть потребляемой с пищей энергии идет у животных на поддержание их жизнедеятельности и лишь сравнительно небольшая – на построение тела, рост и размножение. Иными словами, большая часть энергии при переходе из одного звена пищевой цепи в другое теряется, так как к следующему потребителю может поступить лишь та энергия, которая заключается в массе поедаемого организма. По грубым подсчетам, эти потери составляют около 90 % при каждом акте передачи энергии через трофическую цепь. Следовательно, если калорийность растительного организма 1000 Дж, при полном поедании его травоядным животным в теле последнего останется из этой порции всего 100, в теле хищника – лишь 10 Дж, а если этот хищник будет съеден другим, то на его долю придется только 1 Дж, т. е. 0,1 %.
Таким образом, запас энергии, накопленный зелеными растениями, в цепях питания стремительно иссякает. Поэтому пищевая цепь включает обычно всего 4–5 звеньев. Потерянная в цепях питания энергия может быть восполнена только поступлением новых ее порций. Поэтому в экосистемах не может быть круговорота энергии, аналогичного круговороту веществ (рис. 148). Экосистема функционирует только за счет направленного потока энергии, постоянного поступления ее извне в виде солнечного излучения или готовых запасов органического вещества.
Трофические цепи, которые начинаются с фотосинтезирующих организмов, называют цепями выедания(илипастбищными,илицепями потребления), а цепи, которые начинаются с отмерших остатков растений, трупов и экскрементов животных, –детритными цепями разложения.Таким образом, поток энергии, входящий в экосистему, разбивается далее как бы на два основные русла, поступая к консументам через живые ткани растений или запасы мертвого органического вещества, источником которого также является фотосинтез.
В разных типах экосистем мощность потоков энергии через цепи выедания и разложения различна: в водных сообществах большая часть энергии, фиксированной одноклеточными водорослями, поступает к питающимся фитопланктоном животным и далее – к хищникам и значительно меньшая включается в цепи разложения. В большинстве экосистем суши противоположное соотношение: в лесах, например, более 90 % ежегодного прироста растительной массы поступает через опад в детритные цепи (рис. 149).
Энергетика экосистем.
Говоря о потоках вещества и энергии, следует четко определиться в этих терминах: Поток вещества - перемещение последнего в форме химических элементов и их соединений от продуцентов к редуцентам (через консументы или без них). Поток энергии - переход энергии в виде химических связей органических соединений (пищи) по цепям питания от одного трофического уровня к другому (более высокому). Следует указать, что в отличие от веществ, которые постоянно циркулируют по разным блокам экосистемы и всегда могут вновь входить в круговорот, поступившая энергия может быть использована только один раз. Как универсальное явление природы, односторонний приток энергии обусловлен действием законов термодинамики. Согласно первому из них: энергия может переходить из одной формы (энергия света) в другую (потенциальную энергию пищи), но она никогда не создается вновь и не исчезает бесследно. Второй же закон термодинамики утверждает, что не может быть ни одного процесса, связанного с превращением энергии, без потери некоторой ее части, По этой причине не может быть превращений, например, пищи в вещество, из которого состоит тело организма, идущих со 100% эффективностью. Таким образом, функционирование всех экосистем определяется постоянным притоком энергии, которая необходима всем организмам для поддержания их существования и самовоспроизведения. При изучении развития экосистем следует учитывать и конкурентные отношения. В этом аспекте большой интерес представляет закон максимизации энергии (Г. Одум - Э. Одум):
В соперничестве с другими экосистемами выживает (сохраняется) та из них, которая наилучшим образом способствует поступлению энергии и использует максимальное ее количество наиболее эффективным способом.
Авторы данного закона пишут: <<с этой целью система: 1) создает накопители (хранилища) высококачественной энергии (например, запасы жира); 2) затрачивает определенное количество накопленной энергии на обеспечение поступления новой энергии; 3) обеспечивает круговорот различных веществ; 4) создает механизмы регулирования, поддерживающие устойчивость системы и ее способность к приспособлению к изменяющимся условиям; 5) налаживает с другими системами обмен, необходимый для обеспечения потребности в энергии специальных видов>>, Необходимо подчеркнуть важное обстоятельство: закон максимизации энергии справедлив и в отношении информации, следовательно его возможно рассматривать и как закон максимизации энергии и информации с такой формулировкой:
Наилучшими шансами на самосохранение обладает система, в наибольшей степени способствующая поступлению, выработке и эффективному использованию энергии и информации.
Отметим, что максимальное поступление вещества, как такового, еще не гарантирует успеха системе в конкурентной группе других аналогичных систем. Ранее отмечалось, что между организмами биоценоза возникают и устанавливаются прочные пищевые взаимоотношения или цепь питания. Последняя состоит из трех основных звеньев: продуцентов, консументов и редуцентов. Цепи питания, начинающиеся с фотосинтезирующих организмов, называют цепями выедания (или пастбищными), а цепи, которые начинаются с отмерших остатков растений, трупов и экскрементов животных - детритными цепями. Место каждого звена в цепи питания называют трофическим уровнем, он характеризуется различной интенсивностью протекания потока веществ и энергии. Первый трофический уровень - это всегда продуценты; растительноядные консументы относятся ко второму трофическому уровню; плотоядные, живущие за счет растительноядных форм - к третьему; потребляющие других плотоядных - соответственно к четвертому и т.д. Поэтому различают консументов первого, второго, третьего и четвертого порядков, занимающих разные уровни в цепях питания. Очевидно, что основную роль при этом играет пищевая специализация консументов. Виды с широким спектром питания могут включаться в цепи питания на разных трофических уровнях. В рацион, например, человека входит как растительная пища, так и мясо травоядных и плотоядных животных. Поэтому он выступает в разных пищевых цепях в качестве консумента первого, второго или третьего порядков. Так как при передаче энергии с одного уровня на другой происходит ее потеря, цепь питания не может быть длинной. Обычно она состоит из 4-6 звеньев. Например, хищники, питающиеся различными растительноядными и плотоядными животными, являются звеньями многих цепей. Вследствие этого в каждом биоценозе исторически формируются комплексы цепей питания, представляющие собой единое целое. Подобным образом создаются сети питания, которые отличаются большой сложностью. Таким образом, можно сделать вывод о том, что пищевая цепь - основной канал переноса энергии в экосистемах. Благодаря сложности трофических связей выпадение какого-то одного вида нередко почти не сказывается на экосистеме. Пищу исчезнувшего вида начинают потреблять другие ,,пользователи'', питавшиеся им виды находят новые источники пищи, и в целом в сообществе сохраняется равновесие. Рассмотрим как и в каком соотношении передается энергия, заключенная в растительной пище по цепям питания. В ходе фотосинтеза растения связывают в среднем лишь около 1% попадающей на них солнечной энергии. Животное, которое съело растение, часть пищи не переваривает и выделяет в виде экскрементов. Обычно усваивается 20-60% растительного корма, усвоенная энергия идет на поддержание жизнедеятельности животного. Функционирование клеток и органов сопровождается выделением тепла, то есть тем самым существенная доля энергии пищи вскоре рассеивается в окружающей среде. Сравнительно небольшая часть пищи идет на построение новых тканей и создание жировых запасов. Далее, хищник, съевший растительноядное животное и представляющий третий трофический уровень, получает только ту энергию из накопленной растением, которая задержалась в теле его жертвы (второй уровень) в виде прироста биомассы. Расчеты показали, что на каждом этапе передачи вещества и энергии по пищевой цепи теряется примерно 90% энергии и только около одной десятой доли ее переходит к очередному потребителю. Указанное правило передачи энергии в пищевых связях организмов называют ,,правилом десяти процентов'' (принцип Ливдемана). Например, количество энергии, которая доходит до третичных плотоядных (пятый трофический уровень), составляет лишь около 0,0004% энергии, поглощенной продуцентами. Это и объясняет ограниченное количество (5-6) звеньев (уровней) в пищевой цепи независимо от сложности видового состава биогеоценоза. Рассматривая поток энергии в экосистемах, легко понять так же почему с повышением трофического уровня биомасса снижается. Здесь работает энергетический закон экосистем:
Чем больше биомасса популяции, тем ниже должен быть, занимаемый ею трофический уровень, или иначе: на конце длинной пищевой цепи не может быть большой биомассы.
Продуценты. Продуктивность особи и популяции одного и разных видов.
Продуценты— организмы, способные синтезировать органические вещества из неорганических, то есть, все автотрофы. Это, в основном, зелёные растения(синтезируют органические вещества из неорганических в процессе фотосинтеза), однако некоторые виды бактерий-хемотрофов способны на чисто химический синтез органики без солнечного света.
Продуценты являются первым звеном пищевой цепи.
Консументы.
Консументы — гетеротрофы, организмы, потребляющие готовые органические вещества, создаваемые автотрофами (продуцентами). В отличие от редуцентов, консументы не способны разлагать органические вещества до неорганических.
К консументам относят животных, некоторые микроорганизмы, а также паразитические инасекомоядные растения. Классифицируют консументов первого, второго и других порядков, так как на каждом этапе передачи вещества и энергии в трофической цепи теряется до 90 %, экологические пирамиды редко состоят из более чем четырёх порядков консументов.
Консументы первого порядка (первичные консументы) — растительноядные гетеротрофы (травоядные животные, паразитические растения), питаются непосредственно продуцентамибиомассы.
Консументы второго порядка — хищные гетеротрофы (хищники, паразиты хищников), питаются консументами первого порядка.
Отдельно взятый организм может являться в разных трофических цепях консументом разных порядков, например, сова, поедающая мышь, является одновременно консументом второго и третьего порядка, а мышь — первого и второго, так как мышь питается и растениями, и растительноядными насекомыми.
Любой консумент является гетеротрофом, так как не способен синтезировать органические вещества из неорганических. Термин «консумент (первого, второго и так далее) порядка» позволяет более точно указать место организма в цепи питания. Редуценты (например, грибы, бактерии гниения) также являются гетеротрофами, от консументов их отличает способность полностью разлагать органические вещества (белки, углеводы, липиды и другие) до неорганических (углекислый газ, аммиак, мочевина, сероводород), завершая круговорот веществ в природе, создавая субстрат для деятельности продуцентов (автотрофов).
Редуценты.
Редуце́нты (лат.reductio— восстанавливать; также деструкторы, сапротрофы) — микроорганизмы (бактерии и грибы), разрушающие отмершие остатки живых существ, превращая их в неорганические и простейшие органические соединения.
От животных-детритофагов редуценты отличаются прежде всего тем, что не оставляют твёрдых непереваренных остатков (экскрементов). Животных-детритофагов в экологии традиционно относят к консументам. В то же время все организмы выделяют углекислый газ и воду, а часто и другие неорганические (аммиак) или простые органические (мочевина) молекулы и таким образом принимают участие в разрушении (деструкции) органического вещества.
Динамика экосистем. Циклические изменения.
Динамика экосистем
Сложение экосистем — динамический процесс. В экосистемах постоянно происходят изменения в состоянии и жизнедеятельности их членов и соотношении популяций. Многообразные изменения, происходящие в любом сообществе, относят к двум основным типам: циклические и поступательные.
Циклические изменения сообществ отражают суточную, сезонную и многолетнюю периодичность внешних условий и проявления эндогенных ритмов организмов. Суточная динамика экосистем связана главным образом с ритмикой природных явлений и носит строго периодический характер. Нами уже было рассмотрено, что в каждом биоценозе имеются группы организмов, активность жизни у которых приходится на разное время суток. Одни активны днем, другие — ночью. Отсюда в составе и в соотношении отдельных видов биоценоза той или иной экосистемы происходят периодические изменения, так как отдельные организмы на определенное время выключаются из него. Суточную динамику биоценоза обеспечивают как животные, так и растения. Как известно, у растений в течение суток изменяются интенсивность и характер физиологических процессов — ночью не происходит фотосинтез, нередко у растений цветки раскрываются только в ночные часы и опыляются ночными животными, другие приспособлены к опылению днем. Суточная динамика в биоценозах, как правило, выражена тем сильнее, чем значительнее разница температур, влажности и других факторов среды днем и ночью.
Более значительные отклонения в биоценозах наблюдаются при сезонной динамике. Это обусловлено биологическими циклами организмов, которые зависят от сезонной цикличности явлений природы. Так, смена времени года значительное влияние оказывает на жизнедеятельность животных и растений (спячка, зимний сон, диапауза и миграции у животных; периоды цветения, плодоношения, активного роста, листопада и зимнего покоя у растений). Сезонной изменчивости подвержена нередко и ярусная структура биоценоза. Отдельные ярусы растений в соответствующие сезоны года могут полностью исчезать, например, состоящий из однолетников травянистый ярус. Длительность биологических сезонов в разных широтах неодинакова. В связи с этим сезонная динамика биоценозов арктической, умеренной и тропической зон различна. Она выражена наиболее четко в экосистемах умеренного климата и в северных широтах.
Многолетняя изменчивость является нормальной в жизни любого биоценоза. Так, количество осадков, выпадающих в Барабинской лесостепи, резко колеблется по годам, ряд засушливых лет чередуется с многолетним периодом обилия осадков. Тем самым оказывается существенное влияние на растения и животных. При этом происходит выработка экологических ниш —функциональное размежевание в возникающем множестве или его дополнение при малом разнообразии.
Многолетние изменения в составе биоценозов повторяются и в связи с периодическими изменениями общей циркуляции атмосферы, в свою очередь, обусловленной усилением или ослаблением солнечной активности.
В процессе суточной и сезонной динамики целостность биоценозов обычно не нарушается. Биоценоз испытывает лишь периодические колебания качественных и количественных характеристик.
Поступательные изменения в экосистеме приводят в конечном итоге к смене одного биоценоза другим, с иным набором господствующих видов. Причинами подобных смен могут являться внешние по отношению к биоценозу факторы, действующие длительное время в одном направлении, например увеличивающееся загрязнение водоемов, возрастающее в результате мелиорации иссушение болотных почв, усиленный выпас скота и т. д. Данные смены одного биоценоза другим называют экзогенети-ческими. В том случае, когда усиливающее влияние фактора приводит к постепенному упрощению структуры биоценоза, обеднению их состава, снижению продуктивности, подобные смены называют дигрессивными или дигрессиями.
Эндогенетические смены возникают в результате процессов, которые происходят внутри самого биоценоза. Последовательная смена одного биоценоза другим называется экологической сукцессией (от лат. succession — последовательность, смена). Сукцессия является процессом саморазвития экосистем. В основе сукцессии лежит неполнота биологического круговорота в данном биоценозе. Известно, что живые организмы в результате жизнедеятельности меняют вокруг себя среду, изымая из нее часть веществ и насыщая ее продуктами метаболизма. При сравнительно длительном существовании популяций они меняют свое окружение в неблагоприятную сторону и как результат — оказываются вытесненными популяциями других видов, для которых вызванные преобразования среды оказываются экологически выгодными. В биоценозе происходит таким образом смена господствующих видов. Здесь четко прослеживается правило (принцип)экологического дублирования (рис. 12.35). Длительное существование биоценоза возможно лишь в том случае, если изменения среды, вызванные деятельностью одних живых организмов благоприятны для других, с противоположными требованиями.
надежности биотических систем в биосфере
(по Н. Ф. Реймерсу, 1994):
1, 2, З... — потоки энергии через виды; а-а... — связи между ними, А — состояние до исчезновения вида; Б — вид 3 исчез, проходившие через него потоки энергии идут через дублирующие виды 2 и 4
На основе конкурентных взаимодействий видов в ходе сукцессии происходит постепенное формирование более устойчивых комбинаций, соответствующих конкретным абиотическим условиям среды. Пример сукцессии, приводящей к смене одного сообщества другим, — зарастание небольшого озера с последующим появлением на его месте болота, а затем леса.
Вначале по краям озера образуется сплавна — плавающий ковер из осок, мхов и других растений. Постоянно озеро заполняется отмершими остатками растений — торфом. Образуется болото, постепенно зарастающее лесом. Последовательный ряд постепенно и закономерно сменяющих друг друга в сукцессии сообществ называется сукцессионной серией.
Сукцессии в природе чрезвычайно разномасштабны. Их можно наблюдать в банках с культурами, представляющими собой планктонные сообщества — различные виды плавающих водорослей и их потребителей —коловраток, жгутиковых в лужах и прудах, на заброшенных пашнях, выветрившихся скалах и др. В организации экосистем иерархичность проявляется и в сукцессионных процессах — более крупные преобразования биоценозов складываются из более мелких. В стабильных экосистемах с отрегулированным круговоротом веществ также постоянно осуществляются локальные сукцессионные смены, поддерживающие сложную внутреннюю структуру сообществ.
Экологические сукцессии. Климакс.
Динамика и эволюция экосистем
Под влиянием многих факторов видовой состав экосистем может с течением времени меняться. Такое направленное предсказуемое развитие экосистемы до установления равновесия между биотическим сообществом – биоценозом, и абиотической средой – биотопом, - называется сукцессией. Экологическая сукцессия – последовательная смена биоценозов, преимущественно возникающих на одной и той же территории под воздействием природных или антропогенных факторов. Сукцессия, начинающаяся на участие, прежде не занятом, называетсяпервичной (лишайники на пашнях - кустарники, мхи, травы и т.д.). Если сообщество развивается на месте уже существовавшего, то говорят о вторичной сукцессии (после раскорчевания или порубки леса, при устройстве водоема и т.д.).
Скорость сукцессий различна. [В историческом аспекте смена фауны и флоры по геологическим периодам есть не что иное, как экологическая сукцессия.] Сукцессия завершается формированием нового сообщества, которое адаптировано к климатическим условиям. Такое сообщество называется климаксом. Так динамично развиваются экосистемы.
В отличие от сукцессий, эволюция экосистем представляет собой длительный процесс их исторического развития. Эволюционные процессы необратимы. Эволюция экосистем – это история развития жизни на Земле от возникновения биосферы до наших дней. В основе эволюции лежат естественный отбор на видовом или более широком уровне.
В идеальном случае климакс должен существовать достаточно долго: пока его не нарушат внешние воздействия.
Для описания состояния и изменений экосистемы определяющими являются факторы времени и пространства.
Временной фактор, установление промежутка времени, в течение которого система сохраняет свои свойства и параметры, является элементом любого описания состояния системы. Для экосистем это связано со свойством устойчивости. При воздействиях на экосистему (возмущениях), которые не превышают порога ее устойчивости, компенсационные механизмы экосистемы (механизмы гомеостаза) возвращают ее в исходное состояние. Более сильные воздействия переводят экосистему в другое состояние, которое тоже может быть устойчивым, но имеет уже другие параметры, описывающие ее состояние и свойства.
В настоящее время усиливается роль антропогенного фактора в эволюции экосистем. Антропогенные воздействия нарушают естественные круговороты вещества и потоки энергии. Следствием антропогенного воздействия на окружающую среду является снижение устойчивости экосистем к воздействиям. С этой точки зрения различают сукцессии деградационные (в противоположность восстановительным). Если процессы деградации приводят к существенным, негативным для человека последствиям, то он оценивает состояние экосистем как кризисное, или катастрофическое.
Общие закономерности развития сукцессий. Эволюция экосистем.
Экологические сукцессии - постепенное изменение экосистемы, развитие экосистемы, или последовательность сообществ, сменяющих друг друга на данной территории. Сукцессии, обусловленные внешними причинами -экзоэкогенетические (аллогенные) и внутренними причинами -эндоэкогенетическими (автогенные).
Экзоэкогенетические (аллогенные) сукцессии - в этом случае сукцессионные смены вызваны внешними, абиотическими причинами; возникают при различных воздействиях на биоценозы со стороны человека (мелиоративное осушение болот, загрязнение водоемов, выпас скота - рекреационные лесные виды: сныть, копытень, ясменник пахучий вытесняются мятликом, подорожником, затем - луговые, деревья не возобновляются, на смену лесным птицам приходят спутники человека, эвтрофикация). Проблема интродукции.
Эндоэкогенетические (внутренние) сукцессии вызываются в первую очередь изменением структуры и системы связей в существующих сообществах -зарастание скал, зарастание озер, обочин дорог, восстановление леса после вырубки или пожара.
(В. И. Сукачев): Начальный этап сукцессии - сингенез - первоначальное формирование растительного покрова.
Первичные и вторичные сукцессии.
Первичные сукцессии начинаются на субстрате, не измененном деятельностью живых организмов. Например, формирование скальных биоценозов или формирование фитоценоза на ледниковых отложениях.
Вторичные сукцессии имеют восстановительный, демутационный характер. Развиваются на субстрате, первоначально измененном деятельностью живых организмов.
Восстановление вырубок, пожарищ. Вначале вейник, Иван-чай, затем
- осины, березы, ивы, затем - хвойные.
Выпас: высокорослые растения сменяются низкорослыми, остаются полынь, чертополох, подорожник, одуванчик. В степях ковыль ®типчак®низкая полынь австрийская.
По Клементсу, сукцессии проходят фазы:
- обнажения (появление незаселенного пространства); -миграции (заселение пионерными формами жизни);
- эцезиса (колонизация и приспособление к конкретным условиям среды);
- соревнования (конкуренция с вытеснением ряда первичных вселенцев);
- реакции (обратное воздействие сообщества на биотоп и условия существования);
- стабилизации (формирование климаксного биоценоза).
Важный механизм стабилизации - конкурентные отношения. Отношения между организмами в сукцессионных сериях могут быть трех категорий:
Модель облегчения или стимуляции - соответствует фазе эндоэкогенетической сукцессии.
Ранние поселенцы своей деятельностью изменяют среду, делая ее доступной для следующей волны колонистов.
Модель толерантности - конкурентные отношения, происходит отбор более толерантных и конкурентоспособных видов. Смена видов основывается на их различии в стратегии потребления ресурсов. Поздние стадии более устойчивы.
Модель ингибирования - все виды сообщества способны одновременно колонизировать открывшееся местообитание, устойчивы к вторжению конкурентов, но более поздние вселенцы способны закрепиться только после выпадения предшественников.
Первые растения - пионерные сообщества.
Сообщество - это совокупность взаимодействующих популяций, занимающих определенную территорию, живой компонент экосистемы. Полная сукцессия - серия.
Структура сообществ создается постепенно. Голая скала (вулканический остров), попадают водоросли, лишайники и образуют пионерные сообщества ® Почва ® мхи и папоротники ® травы ® кустарники (деревья, кустарники) ® семенные растения. Завершающее сообщество - устойчивое, самовозобновляющееся, в равновесии со средой - климаксное сообщество. Климаксное сообщество имеет один доминант или несколько кодоминантных видов. Дубрава - дуб, бор - сосна, степь - ковыль и т.д., но доминант выделить можно не всегда (тропический лес, океан, саванна). Доминанта - это вид, обладающий наибольшей совокупной биомассой, преобладающие по численности. Виды-эдификаторы - средообразующие, в пер. с лат. строители).
Теория сукцессии разработана в 1916 г. Клементсом. Им создана концепция моноклимакса (в данных климатических условиях может существовать только одно климаксическое сообщество). По Клементсу - основной фактор, определяющий состав климаксного сообщества - климат. Современная концепция - поликлимакса: климакс формируется под влиянием всех физических факторов, может доминировать одно или несколько (дренаж, почва, температура, топография, пожары).
Стабильность популяции нарушается из-за:
а) чрезмерного добывания;
б) разрушения мест обитания;
в) вселения (интродукции) новых видов;
г) загрязненности среды.
Основные закономерности распределения биогеоценотического покрова на Земле.
Технологические формы воздействия человека на биосферу.
Влияние деятельности человека на природные сообщества чрезвычайно разнообразно и прослеживается на всех уровнях биосферы. Кризисное ее состояние в первую очередь связано с такими формами антропогенного воздействия, как прямое истребление ряда видов живых организмов, а также загрязнение биосферы промышленными и бытовыми отходами, пестицидами и т. п.
Эксплуатация биологических ресурсов. Катастрофические результаты влияния человека на природу впервые были восприняты через список истребленных человеком видов растений и животных. Масштабы такого влияния впечатляющи: только за историческое время зарегистрировано исчезновение более 100 видов крупных млекопитающих и примерно такое же количество видов и подвидов птиц. Среди них такие уникальные формы, как моа (Новая Зеландия), эпиорнис (Мадагаскар), дронт (остров Маврикий в Индийском океане), бескрылая гагарка (Исландия; последний экземпляр погиб в 1844 г.), Стеллерова корова (побережье Тихого океана ) и др.
Начиная с 1600 г. процесс истребления млекопитающих и птиц начинает документироваться. Установлено, что процесс истребления интенсифицировался на протяжении по крайней мере трех последних столетий (рис. 16.1).
Главные причины уничтожения птиц и млекопитающих — неумеренная охота и борьба с вредителями (табл. 16.1). При этих формах воздействия вымирание видов шло главным образом через нарушение механизмов воспроизводства популяций из-за резкого снижения их численности и плотности населения.
Тем не менее процесс вымирания продолжался. В «Красную книгу СССР» занесено более 450видов животных и около 700 видов растений, в настоящее время редких и находящихся под угрозой исчезновения.
Проблема переэксплуатации не менее значима и в водной среде. Известно, что перепромысел не только снижает численность промысловых видов гидробионтов, но и оказывает влияние на структуру и воспроизводительные способности их популяций. В частности, омоложение чрезмерно опромышляемых популяций ведет к уменьшению средних размеров животных (рис. 16.2), т. е. сказывается на дальнейшей эффективности промысла. Крайнее выражение перепромысла — исчезновение вида и замена его в водных сообществах другими, менее ценными для человека. Так, интенсивный многолетний промысел сельди в Баренцевом море привел к подрыву ее запасов, и место сельди в этой экосистеме заняла менее ценная мойва. В северной часта Тихого океана аналогичным образом на смену морскому окуню пришел минтай, который в последние годы уверенно занимает первое место в мировом промысле рыб.
И в этом случае есть примеры эффекта своевременного принятия мер охраны. Так, только благодаря энергичным мероприятиям по охране и искусственному разведению на Каспии удалось спасти от полного исчезновения знаменитую белорыбицу, численность которой в 60-е годы сократилась до 2 тыс. экземпляров, а к 1985 г. вновь повысилась до 17 тысяч.
Дождевые тропические леса —самые богатые экосистемы на планете: занимая всего 8 % ее площади, они дают приют почти половине ныне живущих видов животных. Экосистема эта отличается как богатством видов, так и полнотой круговорота: быстрая оборачиваемость биогенных элементов ведет к тому, что они почти не накапливаются. Сведение этих уникальных лесов идет со средней скоростью 71—91 тыс. км2/год, а в странах Амазонии —до 100 тыс. км2/год. В ближайшие годы эти леса могут быть вырублены полностью на Филиппинах, в Малайзии, западной Африке; ненамного лучше обстоит дело в ряде стран Центральной Америки и Индонезии. ¡Одновременно с нарастанием интенсивности рубок возрастает число пожаров из-за небрежного обращения с огнем. Это усиливает эффект сведения лесов.
Так происходит при современном промышленном использовании лесов. А между тем местное население, по многим линиям связанное с лесами, веками вырабатывало более рациональное к ним отношение.Так, индейцы бассейна Амазонки владеют эффективными приемами лесопользования. Хорошо зная местные почвы, они не только поддерживают эффективное земледелие, но и проводят лесопосадки, разумно подбирая подходящие породы. Таким путем они создают очаги леса в саванне, в известной мере компенсируя вырубку лесных массивов.