
- •Экономико-математические методы и модели (курс лекций)
- •Isbn 5-7369-0373-3 © Векленко в.И., 2006 введение
- •Часть I. Экономико-математические
- •Классификация экономико-математических методов
- •1. Методы классической математики
- •Леция 2. Основы линейного программирования
- •1. Общие сведения о линейном программировании
- •2. Задача линейного программирования
- •3. Постановка задачи линейного программирования
- •Лекция 3. Решение и анализ задачи линейного программирования
- •Графический способ решения задачи
- •Симплексный метод и его алгоритм
- •Решение задачи симплексным методом
- •4. Симплекс-метод с искусственным базисом или м-метод
- •Оптимальных решений задач линейного программирования
- •Двойственная задача линейного программирования
- •2. Экономические свойства двойственных оценок
- •3. Анализ оптимального решения по последней симплексной таблице
- •Лекция 5. Распределительный метод решения задачи линейного программирования
- •Постановка и экономико-математическая модель распределительной (транспортной) задачи
- •2. Общая характеристика метода потенциалов
- •3. Решение транспортной задачи
- •Особые случаи решения транспортной задачи
- •Дополнительные ограничения в транспортной задаче
- •Лекция 6. Методы теории игр
- •Основные понятия теории игр
- •Матричные игры
- •Критерии оптимизации в играх с природой. Принятие решений в условиях неопределенности
- •Лекция 7. Методы управления запасами
- •Системы регулирования товарных запасов
- •Модель Уилсона
- •Задача 1
- •Решение
- •Модель планирования экономичного размера партии
- •Формулы модели экономичного размера партии:
- •Задача 2
- •Решение
- •Лекция 8. Балансовые методы и модели
- •Балансовый метод. Принципиальная схема межотраслевого баланса
- •2. Экономико-математическая модель межотраслевого баланса
- •3. Расчеты по модели межотраслевого баланса
- •Определение обратной матрицы Еn-а методом Жордана-Гаусса:
- •Задача 1.
- •Задача 2
- •Лекция 9. Сетевое планирование
- •Основные понятия сетевых методов
- •Методы построения сетевых моделей
- •Основные понятия сетевых методов
- •Методы построения сетевых моделей
- •Задача 1
- •Решение
- •Анализ сетевых моделей
- •Задача 2
- •Решение
- •4. График взаимосвязи работ во времени
- •Задача 3
- •Лекция 10. Методы и модели теории массового обслуживания
- •1. Общие понятия, определения и классификация методов и моделей в системах массового обслуживания
- •2. Модели разомкнутых систем
- •Часть II. Экономико-математические
- •2. Экономическая система
- •Моделирование экономических процессов
- •4. Экономико-математические модели
- •1. Законы спроса и предложения
- •2. Рыночная цена
- •3. Эластичность
- •Закон убывающей предельной полезности. Потребительское поведение
- •2. Эффект дохода и эффект замещения
- •3. Кривые безразличия
- •4. Бюджетные линии
- •Лекция 14. Модели издержек фирмы
- •2. Предельные издержки фирмы
- •Модели поведения фирмы в условиях совершенной конкуренции
- •2 Способ:
- •1 Подход:
- •2 Подход:
- •2. Модели поведения монополии
- •Лекция 16. Оптимальное распределение ресурсов фирмой
- •1. Предельная доходность ресурса
- •2. Предельные издержки ресурса
- •3. Выбор варианта сочетания ресурсов
- •Проектирования
- •1. Принципы анализа инвестиционного проекта
- •2. Стоимость денег во времени. Сложный процент и дисконтирование
- •3. Показатели эффективности в проектном анализе
- •1. Способы представления производственных функций
- •2. Экономико-статистическое моделирование
- •3. Экономические характеристики производственных функций
- •Лекция 19. Модель общего рыночного равновесия эрроу-гурвица
- •1. Алгоритм построения модели
- •2. Проведение модельных расчетов
- •Р. Солоу
- •1. Накопление капитала
- •2. Рост народонаселения
- •3. Научно-технический прогресс
- •Содержание
2. Задача линейного программирования
Линейное программирование является частным разделом математического программирования. Математическое программирование – направление прикладной математики, в котором изучаются задачи условной оптимизации. В экономике такие задачи возникают при практической реализации принципа оптимальности в планировании и управлении.
Необходимым условием оптимального подхода к планированию и управлению (принципа оптимальности) является гибкость, альтернативность производственно-хозяйственных ситуаций, в условиях которых приходится принимать планово-управленческие решения.
Суть
принципа оптимальности состоит в
стремлении выбрать планово-управленческое
решение, заданное вектором
= (х1,
х2,…хn),
где хj
(j
=
)
– его компоненты, которое наиболее
адекватно отражает внутренние возможности
и внешние условия производственной
деятельности хозяйствующего субъекта.
Понятие «наиболее адекватно» здесь означает применение некоторого критерия оптимальности, соответствующего экономическому показателю сравнения эффективности вариантов планово-управленческих решений. Традиционные критерии оптимальности: «максимум прибыли» и «минимум затрат».
Оценка внутренних возможностей и внешних условий производственной деятельности заключается в выполнении экономических условий, т.е. выбор X осуществляется из некоторой области возможных (допустимых) решений D; которую называют областью определения задачи.
Принципу оптимальности в планировании и управлении отвечает решение экстремальной задачи вида:
max
(min) f (),(1)
(2)
где
f
()
– математическая запись критерия
оптимальности – целевая функция.
Задачу условной оптимизации (1) - (2) обычно записывают в виде:
Найти максимум или минимум функции
f
()
= f
(х1,
х2,…хn)
(3)
при ограничениях
(
х1,
х2,…хn)
{<,=,>}b1
(4)
(
х1,
х2,…хn)
{<,=,>}b2
............................................
(
х1,
х2,…хn)
{<,=,>}bm
xj0,
j=
.(5)
Обозначение {<,=,>} говорит о том, что в конкретном ограничении возможен один из знаков: <,= или >. Более компактная запись:
max (min) f (х1, х2,…хn), (6)
(
х1,
х2,…хn)
{<,=,>} bi
, i=
,(7)
xj0,
j=
.(8)
Задача (6) - (8) называется общей задачей математического программирования, другими словами, математической моделью задачи оптимального планирования, в основе построения которой лежат принципы оптимальности и системности.
Вектор
(набор
управляющих переменных xj,
(j
=
)
называется допустимым решением, или
планом задачи математического
программирования, если он удовлетворяет
системе ограничений. Допустимый план
Х,
который позволяет достичь максимум или
минимум целевой функции f(x1,
х2,
..., хn),
называется оптимальным планом (оптимальным
вариантом, или просто решением) задачи
оптимального программирования.
Выбор оптимального управленческого решения в конкретной производственной ситуации связан с прове дением с позиций системности и оптимальности экономико-математического моделирования и решением задачи оптимального программирования.
Задачи математического программирования классифицируют по следующим признакам.
1. По характеру взаимосвязи между переменными:
а) линейные – все соотношения заданы линейными функциями;
б) нелинейные – наличие нелинейных функций.
2. По характеру изменения переменных:
а) непрерывные, область допустимых значений образуют действительные числа;
б) дискретные – требование целочисленности некоторых переменных.
3. По учету фактора времени:
а) статические,
б) динамические.
4. По наличию информации о переменных:
а) задачи в условиях полной определенности (детерминированные),
б) задачи в условиях неполной информации,
в) задачи в условиях неопределенности.
5. По числу критериев оценки альтернатив:
а) однокритериальные задачи,
б) задачи с использованием многокритериального комплекса.
Наиболее изучены задачи линейного программирования, для которых разработан универсальный метод решения, реализуемый способом последовательного улучшения плана (симплекс-метод), с помощью которого может быть решена любая задача линейного программирования.