Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций по ЭММ и М.doc
Скачиваний:
176
Добавлен:
11.02.2015
Размер:
2.97 Mб
Скачать

Лекция 5. Распределительный метод решения задачи линейного программирования

  1. Постановка и экономико-математическая модель распределительной (транспортной) задачи

  2. Общая характеристика метода потенциалов

  3. Решение транспортной задачи

  4. Особые случаи решения транспортной задачи

  5. Дополнительные ограничения в транспортной задаче

  1. Постановка и экономико-математическая модель распределительной (транспортной) задачи

Практически все задачи линейного программирования можно решить, используя ту или иную модификацию симплексного метода. Однако существуют более эффективные вычислительные процедуры решения некоторых типов задач линейного программирования, основанные на специфике ограничений этих задач. Рассмотрим так называемую транспортную задачу по критерию стоимости, которую можно сформулировать следующим образом.

(1)

, (2)

В т пунктах отправления А1, А2,...,Ат,, которые в дальнейшем будем называть поставщиками, находится аi (i = 1, 2, ..., т) единиц некоторого однородного продукта. Данный продукт потребляется в п пунктах В1, В2,…, Вn, которые будем называть потребителями; объем потребления обозначим bj (j = 1, 2, ..., п). Известны расходы на перевозку единицы продукта из пункта Ai в пункт Bj, которые равны cij и приведены в матрице транспортных расходов С = ij).

Требуется составить такой план прикрепления потребителей к поставщикам, т.е. план перевозок, при котором весь продукт вывозится из пунктов Ai в пункты Bj в соответствии с потребностью и общая величина транспортных издержек будет минимальной.

Обозначим количество продукта, перевозимого из пункта Ai в пункт Bj, через xij. Совокупность всех переменных xij для краткости обозначим , тогда целевая функция задачи представляет собой линейную форму:

(3)

Условия (1) означают полное удовлетворение спроса во всех пунктах потребления; условия (2) определяют полный вывоз продукции от всех поставщиков.

Необходимым и достаточным условием разрешимости задачи (1) – (3) является условие баланса:

(4)

2. Общая характеристика метода потенциалов

Транспортная задача, в которой имеет место равенство (4), называется закрытой и может быть решена как задача линейного программирования с помощью симплексного метода. Однако благодаря особенностям переменных задачи и системы ограничений разработаны специальные, менее громоздкие методы ее решения. Наиболее применяемым методом является метод потенциалов, при котором для каждой i-й строки (i-го поставщика) определяется потенциал ui, а для каждого столбца j - потенциал vj. Сумма потенциалов для перевозки груза от i-го поставщика к j-му потребителю должна быть равна величине транспортных расходов cij, т.е. быть оценена с точки зрения критерия решаемой задачи:

cij=vj+ui (5)

Если баланс (4) не выполняется, то ограничения (1) или (2) имеют вид неравенств типа «меньше или равно»; транспортная задача в таком случае называется открытой. Для решения открытой транспортной задачи методом потенциалов ее сводят к закрытой задаче путем ввода фиктивного потребителя, если в неравенства превращаются условия (2), или фиктивного поставщика в случае превращения в неравенства ограничений (1).

Рассмотрим этапы реализации метода потенциалов для закрытой транспортной задачи. Прежде всего следует отметить, что при условии баланса (4) ранг системы линейных уравнений (1), (2) равен т + п - 1; таким образом из общего числа (m n) неизвестных базисных неизвестных будет (т + п – 1). Вследствие этого при любом допустимом базисном распределении в матрице перевозок, представленной в общем виде в табл. 9, будет занято ровно т + п - 1 клеток, которые будем называть базисными в отличие от остальных свободных клеток. Коэффициент целевой функции в занятых клетках будем выделять полукругом.

Первым этапом алгоритма метода потенциалов является составление начального распределения (начального плана перевозок); для реализации этого начального этапа используются методы северо-западного угла, наименьших стоимостей, аппроксимаций Фогеля. На втором этапе выполняется построение системы потенциалов на основе равенства (5) и проверка начального плана на оптимальность; в случае его неоптимальности переходят к третьему этапу, содержание которого заключается в реализации так называемого цикла перераспределения, после чего переходят опять ко второму этапу. Совокупность процедур третьего и второго этапов образует одну итерацию; эти итерации повторяются, пока план перевозок не станет оптимальным по критерию (1). Решение транспортной задачи выполняется в матричном виде. Матрица планирования приведена в таблице 9.

Таблица 9 – Матрица планирования перевозок груза

Вj

Ai

B1

B2

……

Bn

b1

b2

……

bn

А1

a1

c11

x11

c12

x12

……

c1n

x1n

А2

a2

c21

x21

c22

x22

……

c2n

x2n

……

……

……

……

……

……

Аm

am

cm1

xm1

cm2

xm2

……

cmn

xmn