Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Введение в мехатронику.doc
Скачиваний:
342
Добавлен:
11.02.2015
Размер:
33.06 Mб
Скачать

Контрольные вопросы

1. Назовите этапы преобразования энергии в гидравлических системах. Перечислите известные Вам устройства и их функциональные назначения, используемые на каждом этапе.

2. Сформулируйте закон Паскаля для гидростатических систем.

3. Какие процессы будут происходить в жидкости в местах уменьшения проходного сечения? Напишите и поясните уравнения непрерывности и уравнение Бернулли.

4. Объясните принцип действия гидроцилиндров, поворотных гидроцилиндров, а также шестеренных и поршневых гидромоторов.

5. Какие гидроаппараты Вы знаете? Назовите их функциональное назначение. Поясните принцип работы.

6. Назовите основной недостаток игольчатого дросселя. Каким образом он устраняется в регуляторах давления?

Глава 3. Преобразователи движения

Передача движения от исполнительного электродвигателя к выходному звену мехатронного модуля может быть обеспечена с помощью различных преобразователей движения (передач), структура и конструктивные особенности которых зависят от типа двигателя, вида перемещения рабочего органа и способа их расположения. Преобразователи движения оказывают существенное влияние на качество работы мехатронного модуля в целом.

При проектировании мехатронных модулей тип преобразователя движения выбирают исходя из сложности его конструкции, к.п.д., люфта в передаче, габаритных размеров, массы, свойств самоторможения, жесткости, удобства компоновки, технологичности, стоимости и др.

3.1. Назначение и классификация преобразователей движения

Преобразователи движения предназначены для преобразования одного вида движения в другое, согласования скоростей и вращающих моментов двигателя и рабочего органа. Для преобразования движения используют зубчатые, червячные, цепные, ременные и фрикционные передачи, а также передачи винт-гайка (рис. 3.1). В связи с тем, что угловая скорость вращения электродвигателей, как правило, на много выше скоростей рабочих органов мехатронных модулей, то в преобразователях движения применяются понижающие передачи.

Рис. 3.1. Классификация механических передач

преобразователей движения

3.2. Зубчатые передачи

Наиболее распространенными преобразователями движения являются зубчатые передачи – механизмы, передающие или преобразующие движение с помощью зацепления с изменением угловых скоростей и моментов. Такие передачи применяют для преобразования вращательного движения между валами с параллельными (рис. 3.2, а-г), пересекающимися (рис. 3.2, е-з) осями, а также для преобразования вращательного движения в поступательное, и наоборот (рис. 3.2, д).

Рис. 3.2. Основные виды зубчатых передач:

а – цилиндрическая с прямыми зубьями; б – цилиндрическая с косыми зубьями; в – цилиндрическая с шевронными зубьями; г – цилиндрическая внутреннего зацепления с прямыми зубьями; д - реечная передача; е – коническая с прямыми зубьями; ж – коническая с тангенциальными зубьями; з – коническая с круговыми зубьями;

Кинематическая схема цилиндрической и конической передач приведены на рис. 3.3. Передаточное соотношение может быть найдено из соотношения числа зубьев входной z1 и выходной z2 шестерен

. (3.1)

Основными характеристиками механических передач являются мощности на валах ивВт, угловые скорости ивс-1, (или частота вращения ивмин-1), моменты сил ив, передаточное соотношениеи к.п.д.. Выражения, описывающие взаимосвязи основных характеристик зубчатых передач имеют вид

или и, (3.2)

, (3.3)

или , (3.4)

и , (3.5)

или при выделении момента потерь в передаче в виде

. (3.6)

Также следует отметить, что приведение моментов инерции элемента мехатронного модуля, вращающегося со скоростью или поступательно движущегося со скоростью, к скоростиможет быть выполнено на основании закона сохранения кинетической энергии

или (3.7)

в соответствии с выражением

или , (3.8)

где – масса поступательно движущегося тела;– радиус приведения к валу со скоростью

. (3.9)

Для реечной передачи, при преобразовании вращательного движения в поступательное, линейная скорость рейки определится как

, , (3.10)

передаточное соотношение

, , (3.11)

где – диаметр шестерни вмм.

Передаточное соотношение реечной передачи может находиться в диапазоне 10…200 м-1. К.п.д. цилиндрических передач составляет 0,95…0,99.

На рис. 3.4 приведена схема планетарной передачи. Планетарными называют зубчатые передачи, в которых геометрическая ось хотя бы одной шестерни подвижна. Основными элементами планетарной передачи являются:

- солнечная шестерня 1 (находится в центре);

- водило 2, жёстко фиксирующее друг относительно друга оси нескольких планетарных шестерён одинакового размера 3 (сателлитов), находящихся в зацеплении с солнечной шестерней;

- кольцевая шестерня 4 (эпицикл), имеющая внутреннее зацепление с планетарными шестернями.

При использовании планетарной передачи в качестве редуктора один из трёх её основных элементов фиксируется неподвижно, другой элемент используется как ведущий, а третий – в качестве ведомого.

В случае, когда водило 2 зафиксировано (), а мощность подводится через солнечную шестерню1, планетарные шестерни 3 будут вращаться на месте со скоростью, определяемой отношением числа их зубьев относительно солнечной шестерни

.

Вращение планетарных шестерён 3 передается кольцевой шестерне 4. Если кольцевая шестерня имеет зубьев, то она будет вращаться со скоростью

.

В итоге, если водило заблокировано, то общее передаточное отношение системы будет равно

. (3.12)

В случае, если закреплена кольцевая шестерня (), а мощность подводится к водилу, то передаточное отношение на солнечную шестерню будет больше единицы и составит

. (3.13)

Наиболее широкое применение планетарные передачи нашли в автомобильных дифференциалах и в суммирующих звеньях кинематических схем металлорежущих станков. В современных устройствах могут использоваться каскады из нескольких планетарных передач для получения большого диапазона передаточных чисел. На этом принципе работают многие автоматические коробки передач автомобилей.

Достоинствами планетарных передач по сравнению с обычными цилиндрическими или коническими передачами являются меньшие габариты и масса. Недостатками – повышенная точность изготовления, большее число подшипников качения.

Для получения больших передаточных чисел (до 90000) применяют волновые передачи (см. рис. 3.5). Волновая передача состоит из жесткого неподвижного элемента – зубчатого колеса1 с внутренними зубьями, неподвижного относительно корпуса передачи; гибкого элемента – тонкостенного упругого зубчатого колеса с наружными зубьями 2, соединенного с выходным валом; генератора волн – кулачка 3, эксцентрика или другого механизма, растягивающего гибкий элемент до образования в двух (или более) точках пар зацепления с неподвижным элементом. Число зубьев гибкого колеса несколько меньше числа зубьев неподвижного элемента.

Принцип работы волновой зубчатой передачи проиллюстрирован на рис. 3.6. Например, при числе зубьев гибкого колеса 200, а неподвижного элемента – 202 и двухволновой передаче (два выступа на генераторе волн) при вращении генератора по часовой стрелке первый зуб гибкого колеса будет входить в первую впадину жёсткого, второй во вторую и т.д. до двухсотого зуба и двухсотой впадины. На следующем обороте первый зуб гибкого колеса войдёт в двести первую впадину, второй – в двести вторую, а третий – в первую впадину жёсткого колеса. Таким образом, за один полный оборот генератора волн гибкое колесо сместится относительно жёсткого всего на 2 зуба.

Передаточное соотношение волновой передачи от вала генератора волн к валу гибкого колеса равно

, (3.14)

где ,– соответственно число зубьев жесткого и гибкого зубчатых колес.

Основной недостаток таких редукторов – низкий к.п.д. (не более 70…80%), а также высокие требования к точности изготовления и свойствам применяемых материалов.