Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
voprosy_po_materialovedeniyu / 2.Основы кристаллографии. Методы исследований и испытаний металлов.doc
Скачиваний:
46
Добавлен:
11.02.2015
Размер:
92.67 Кб
Скачать

Общая характеристика металлов и сплавов

В природе металлы встречаются как в чистом виде, так и в рудах, оксидах и солях. В чистом виде встречаются химически устойчивые элементы (Pt, Au, Ag, Cu). Масса наибольшего самородка меди составляет 420 т, серебра — 13,5 т, золота — 112 кг. Из 111 открытых элементов, представленных в Периодической системе элементов Д. И. Менделеева, 76 являются металлами, Si, Ge, As, Se, Te — промежуточными между металлами и неметаллами, иногда их называют полуметаллами. Все элементы, расположенные левее мысленной линии, проведенной от бора до астата (от № 5 до № 85) относятся к металлам, а правее — в основном, к неметаллам. Эта граница недостаточно четко выражена, так как среди элементов, расположенных вблизи границы, находятся и полуметаллы.

Металлические материалы обычно делятся на две большие группы: железо и сплавы железа (сталь и чугун) называют черными металлами, а остальные металлы и их сплавы — цветными. Кроме того, все цветные металлы, применяемые в технике, в свою очередь, делятся на следующие группы:

  • легкие металлы Mg, Be, Al, Ti с плотностью до 5 г/см3;

  • тяжелые металлы Pb, Mo, Ag, Au, Pt, W, Та, Ir, Os с плотностью, превышающей 10 г/см3;

  • легкоплавкие металлы Sn, Pb, Zn с температурой плавления 232; 327; 410 °С соответственно;

  • тугоплавкие металлы W, Mo, Та, Nb с температурой плавления выше, чем у железа (> 1536 °С);

  • благородные металлы Au, Ag, Pt с высокой устойчивостью против коррозии;

  • урановые металлы или актиноиды, используемые в атомной технике;

  • редкоземельные металлы (РЗМ) — лантаноиды, применяемые для модифицирования стали;

  • щелочные и щелочноземельные металлы Na, К, Li, Ca в свободном состоянии применяются в качестве жидкометаллических теплоносителей в атомных реакторах

Металлы имеют характерные общие свойства. К ним относятся:

  • высокая пластичность;

  • высокие тепло- и электропроводность;

  • положительный температурный коэффициент электрического сопротивления, означающий рост сопротивления с повышением температуры и сверхпроводимость многих металлов (около 30) при температурах, близких к абсолютному нулю;

  • хорошая отражательная способность (металлы непрозрачны и имеют характерный металлический блеск);

  • термоэлектронная эмиссия, т. е. способность к испусканию электронов при нагреве;

  • кристаллическое строение в твердом состоянии.

Кристаллическое строение металлов

Общее свойство металлов и сплавов — их кристаллическое строение, характеризующееся определенным закономерным расположением атомов в пространстве. Для описания атомно-кристал­лической структуры используют понятие кристаллической решетки, являющейся воображаемой пространст­венной сеткой с ионами (атомами) в узлах.

В кристалле элементарные частицы (атомы, ионы) сближены до соприкосновения. Для упрощения пространственное изображение принято заменять схемами, где центры тяжести частиц представлены точками. В точках пересечения прямых линий располагаются атомы; они называются узлами решетки. Расстояния a, b и c между центрами атомов, находящихся в соседних узлах решетки, называют параметрами, или периодами решетки. Величина их в металлах порядка 0,1–0,7 нм, размеры элементарных ячеек — 0,2–0,3 нм.

Металлографические методы испытаний

Макроскопический анализ

Макроанализ заключается в определении строения металла путем просмотра его излома или специально подготовленной поверхности невооруженным глазом или через лупу при небольших увеличениях — до 30 раз. Это позволяет наблюдать одновременно большую поверхность и получить представление об общем строении металла и о наличии в нем определенных дефектов.

В отличие от микроскопического исследования макроскопический анализ не определяет подробностей строения и часто является предварительным, но не окончательным видом исследования. Характеризуя многие особенности строения, макроанализ позволяет выбрать те участки, которые требуют дальнейшего микроскопического исследования. С помощью макроанализа можно определить:

1. Нарушение сплошности металла: усадочную рыхлость, газовые пузыри и раковины, пустоты, образовавшиеся в литом металле, трещины, возникшие при горячей механической или термической обработке, флокены, дефекты сварки (в виде непровара, газовых пузырей, пустот);

2. Дендритное строение и зону транскристаллизации в литом металле;

3. Химическую неоднородность сплава (ликвацию);

4. Неоднородность строения сплава, вызванную обработкой давлением: полосчатость, а также линии скольжения (сдвигов) в наклепанном металле;

5. Неоднородность, созданную термической или химико-термической обработкой.

Микроскопический анализ

Микроскопический анализ металлов заключается в исследовании их структуры с помощью оптического микроскопа (использующего обычное белое или ультрафиолетовое излучение) и электронного микроскопа.

При использовании оптического микроскопа структуру металла можно изучать при общем увеличении от нескольких десятков до 2 000–3 000 раз. Микроанализ позволяет характеризовать размеры и расположение различных фаз, присутствующих в сплавах, если размеры частиц этих фаз не менее 0,2 мкм. Многие фазы в металлических сплавах имеют размеры 10–4–10–2 см и поэтому могут быть различимы в микроскопе.

Электронная микроскопия

Появление электронного микроскопа, имеющего разрешающую способность, в десятки раз большую, чем световой микроскоп, позволило подробно изучить такие важные элементы структуры, как выделения второй фазы при старении пересыщенных твердых растворов и, в частности, при отпуске закаленной стали, однодоменные ферромагнитные включения в высококоэрцитивных сплавах, структуру межкристаллитных прослоек и т. д. Однако следует учитывать, что при исследовании объектов косвенными методами электронный микроскоп не дает возможности проводить фазовый анализ. Последний должен, как правило, сопровождать исследование структуры металла. При исследовании прямым или полупрямым методами фазовый анализ возможен непосредственно в электронном микроскопе, настраиваемом для этого на дифракционную съемку; в этом случае микроскоп играет роль электронографа.

Рентгенострукту́рный ана́лиз (рентгенодифракционный анализ) — один из дифракционных методов исследования структуры вещества. В основе данного метода лежит явление дифракции рентгеновских лучей на трехмерной кристаллической решётке.

Явление дифракции рентгеновских лучей на кристаллах открыл Лауэ, теоретическое обоснование явлению дали Вульф и Брэгг (условие Вульфа-Брэгга). Как метод, рентгеноструктурный анализ разработан Дебаем и Шеррером. Метод позволяет определять атомную структуру вещества, включающую в себя пространственную группу элементарной ячейки, её размеры и форму, а также определить группу симметрии кристалла.

Рентгеноструктурный анализ и по сей день является самым распространенным методом определения структуры вещества в силу его простоты и относительной дешевизны.