Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
NF_ITOG_3.docx
Скачиваний:
13
Добавлен:
02.07.2023
Размер:
16.34 Mб
Скачать

28. Проводящая система сердца, ее отделы, клеточный состав и значение. Роль в обеспечении хронотографии процесса возбуждения

29. Градиент автоматии различных отделов проводящей системы.

Существует так называемый градиент автоматии, выражающийся в убывающей способности к автоматии различных участков прово­дящей системы по мере их удаления от синусно-предсердного узла, генерирующего импульса с частотой до 60—80 в минуту.

В обычных условиях автоматия всех нижерасположенных уча­стков проводящей системы подавляется более частыми импульсами, поступающими из синусно-предсердного узла. В случае поражения и выхода из строя этого узла водителем ритма может стать предсердно-желудочковый узел. Импульсы при этом будут возникать с частотой 40—50 в минуту. Если окажется выключенным и этот узел, водителем ритма могут стать волокна предсердно-желудочкового пучка (пучок Гиса). Частота сердечных сокращений в этом случае не превысит 30—40 в минуту. Если выйдут из строя и эти водители ритма, то процесс возбуждения спонтанно может возник­нуть в клетках волокон Пуркинье. Ритм сердца при этом будет очень редким — примерно 20 в минуту

30. Сократимость сердца.

Различают период абсолютной рефрактерности( полная невозбудимость), который в миокарде продолжается 0,27 с. Период относительной рефрактерности , во время которого сердечная мышца может сокращаться лишь на очень сильные раздражения( продолжается 0,03 с и соответствует фазе быстрой реполяризации ПД), и период супернормальной возбудимости, когда сердечная мышца может отвечать сокращением на подпороговые раздражения.

Сокращение (систола) миокарда продолжается 0,3 с , что по времени примерно совпадает с общей рефрактерностью , представляющей собой сумму абсолютной и относительной рефрактерности. Следовательно в периоде сокращения сердце неспособно реагировать на другие раздражители. Раздражение, нанесенное на миокард в период расслабления( диастола), когда его возбудимость частично или полностью восстановлена, вызывает внеочередное сокращение сердца- экстрасистолу.

+

Сократимость миокарда — это способность миокарда отвечать на возбуждение сокращением. В этой части понятие сократимости миокарда не отличается от понятия сократимости скелетной мышцы. Однако сократимость миокарда отражает также его способность отвечать различной силой и скоростью сокращения на различные нагрузки или регуляторные воздействия.

Процесс сокращения миокарда: каждый кардиомиоцит содержит много миофибрилл, а каждая миофибрилла состоит из 200—1000 протофибрилл — актиновых и миозиновых нитей. С поверхности миокардиоцита в глубь клетки уходит Т-образное выпячивание (Т-система), которое внутри клетки контактирует с цистернами саркоплазматического ретикулюма. Инициация сокращения происходит под влиянием кальция: он взаимодействует с тропо-нином. Это меняет положение тропомиозина на актиновой нити, с которыми миозиновые мостики способны вступать в контакт. Далее начинается мостиковый цикл — взаимодействие, тяга, отщепление под влиянием гидролиза АТФ и новый цикл. Чем больше ионов кальция — тем больше число взаимодействующих мостиков и тем выше сила сокращения.

Когда из среды удаляется кальций, то сердечная мышца уже через 15—60 сек. перестает сокращаться. Это указывает на важнейшую роль наружного кальция в деятельности сердца.

31. Сопряжение процессов возбуждения и сокращения в кардиомиоцитах. Роль в потенциалах действия в Ca2+-индуцированной мобилизации Ca2+.

Распределение ИОНОВ К+ и Na+ в кардиомиоците к близко к распределению этих ионов в скелетной мышце. Однако в кардиомиоците при формировании ПД и в процессе сокращения существенную роль играют и ионы Са2+ Их концентрация снаружи клетки составляет около 2 ммоль/л, но внутри клетки концентрация свободных ионов Са2+ очень мала: 10-4 ммолъ/л. При сокращении концентрация свободных ионов Са2+ внутри клетки может возрастать до 103 ммоль/л, но в фазе реполяризации избыток этих ИОНОВ удаляется из клетки. Сохранение ионного балланса в кардиомиоцитах обеспечивает К+ - Na+- и Са2+-насосы, активно перекачивающие ионы Na+ и Са2+ наружу, и ионы К+ - внутрь клетки. Работу этих насосов обеспечивают ферменты К+ - Na+ -АТФаза и Са2+ -АТФаза, нахолящиеся в сарколемме миокардиальных клеток.

I фаза — деполяризация, как и в аксоне, определяется резким ростом проницаемости мембраны для ионов натрия. Порог активации натриевых каналов примерно -60 мВ, а время жизни 1 - 2 мс и может доходить до 6 мс. Фаза 1 в клетках миокарда предсердий, сердечных проводящих миоцитов (волокна Пуркинье) и миокарда желудочков имеет ту же природу, что и восходящая фаза ПД нервных и скелетных мышечных волокон — она обусловлена повышением натриевой проницаемости, т. е. активацией быстрых натриевых каналов клеточной мембраны. Во время пика ПД происходит изменение знака мембранного потенциала (с —90 до +30 мВ).

II фаза — плато - характерна медленным спадом от пикового значения (= + 30 мВ) до нуля, В этой фазе одновременно работают два типа каналов - медленные кальциевые каналы и калиевые каналы.

III фаза - реполяризация - характеризуется закрытием кальциевых каналов и усилением выходящего тока К+.

Соседние файлы в предмете Нормальная физиология