Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Гистология коллоквиум — ответы .docx
Скачиваний:
10
Добавлен:
06.06.2023
Размер:
66.14 Кб
Скачать

40. Строение и функциональные особенности безмиелиновых нервных волокон.

Нервные волокна.

Отростки нервных клеток, покрытые оболочками, называются волокнами. По строению оболочек различают миелиновые и безмиелиновые нервные волокна. Отросток нервной клетки в нервном волокне называют осевым цилиндром, или аксоном.

В ЦНС оболочки отростков нейронов образуют отростки олигодендроглиоцитов, а в перефирической – нейролеммоциты.

Безмиелиновые нервные волокна располагаются преимущественно в периферической вегетативной нервной системе. Их оболочка представляет собой тяж нейролеммоцитов, в который погружены осевые цилиндры. Безмиелиновое волокно, в котором находятся несколько осевых цилиндров, называется волокном кабельного типа. Осевые цилиндры из одного волокна могут переходить в соседнее.

Процесс образования безмиелинового нервного волокна происходит следующим образом. При появлении отростка в нервной клетке рядом с ним появляется тяж нейролеммоцитов. Отросток нервной клетки (осевой цилиндр) начинает погружаться в тяж нейролеммоцитов, увлекая плазмолемму вглубь цитоплазмы. Сдвоенная плазмолемма называется мезаксоном. Таким образом, осевой цилиндр располагается на дне мезаксона (подвешен на мезаксоне). Снаружи безмиелиновое волокно покрыто базальной мембраной.

41. Морфофизиологическая характеристика гиалиновой хрящевой ткани.

Гиалиновая хрящевая ткань является наиболее распространенным в организме видом хрящевых тканей. Она образует скелет у плода, вентральные концы ребер, хрящи носа, гортани (частично), трахеи и крупных бронхов, покрывает суставные поверхности. Название этой

хряшевой ткани обусловлено ее внешним сходством на макропрепарате с матовым стеклом (греч. hyalos - стекло). В состав ткани входят клет-ки (хондроциты) и межклеточное вещество.

Хондроциты - высокоспепиализировэнные клетки, вырабатывающие межклеточное вещество (матрикс) хрящевой ткани. Они имеют овальную или сферическую форму и располагаются в лакунах пооди-Ночке или в виде изогенных групп (которые в глубоких отделах хряща могут содержать до 8-12 клеток). Под электронным микроскопом на их поверхности выявляются многочисленные микроворсинки (рис. 12-2). Прижизненно хондроциты целиком заполняют лакуны; при фиксации они сжимаются, отделяясь от стенки лакуны, и могут приобретать от-ростчатую форму. Ядро хондропитов - круглое или овальное, светлое (преобладает эухроматин), с одним или несколькими ядрышками. Цитоплазма содержит многочисленные цистерны грЭПС, нередко умеренно расширенные, крупный комплекс Гольджи, гранулы гликогена и липид-ные капли. Хондроцит является конечной стадией развития хондробласта.

Критерии разграничения понятий "хондроцит" и "хондробласт" не абсолютны. По сравнению с хондробластами хондроциты представляют собой более зрелые клетки, в значительной мере утратившие способСинтетическая деятельность хондроцитов в гиалиновой хрящевой ткани связана с выработкой следующих продуктов:

(1) коллагена II типа (кодируется особым геном, отличным от генов, контролирующих выработку коллагенов I и III типов; выделяется за пределы клетки в виде молекул тропоколлагена, которые формируют волокна путем самосборки);

(2) сульфатированных гликозаминогликанов, продуцируемых в виде мономерных молекул, которые в дальнейшем внеклеточно объединяются в крупные агрегаты протеогликанов;

(3) гликопротеинов.

Процессы синтеза коллагена II типа и сульфатированных гликозаминогликанов являются фенотипическими признаками хондроцитъ. и четко скоординированы между собой.

Межклеточное вещество (матрикс) хрящевой ткани

обеспечивает высокие биомеханические свойства хрящевых тканей и включает три основных компонента: (1) коллаген И типа, образующий волокнистый каркас; (2) протеогликаны, формирующие агрегаты, которые заполняют петли коллагенового каркаса и взаимодействуют с ним; (3) интерстициальную воду, свободно перемещающуюся в пространствах, заполненных протеогликанами. В матриксе указанные компоненты составляют 20-25%, 5-10% и 65-85% его влажного веса, соответственно. Значение матрикса хряща связано также с тем, что он способствует поддержанию хондроцитов в дифференцированном состоянии.

На гистологических препаратах матрикс кажется однородным -коллагеновые волокна в нем не видны, поскольку они маскируются основным веществом, имеющим сходный коэффициент преломления. Матрикс дает положительную ШИК-реакдию на углеводы, связывает основные красители и окрашивается метахроматически толуидиновым синим.

(1) Коллаген II типа образует тонкие (10-20 нм) фибриллы, собирающиеся в волокна, распределение которых в пространстве обычно соответствует направлению сил, воздействующих на хрящ. Благодаря этому обеспечиваются высокие механические свойства ткани. Коллаге-новый каркас хрящевого матрикса обладает большой упругостью и вы-

сокой прочностью, препятствуя его растяжению и, в меньшей степени, сжатию. У взрослого коллагеновые волокна в гиалиновом хряще не обновляются, что может способствовать его старению.

(2) Протеогликаны хрящевого матрикса являются главными компонентами его основного аморфного вещества. Они на 10-20% состоят из белков и на 80-90% - из гликозаминогликанов. Среди последних преобладает хондроитинсульфат, небольшую часть составляет кератан-сулъфат. Каждая субъединица (мономер) протеогликанов хряща содержит молекулу осевого белка длиной около 300 нм, связанную с отходящими от нее под прямым углом молекулами хондроитинсульфата и ке-ратансульфата, что придает ей вид "ершика для мытья пробирок" (рис. 12-3). В агрегате протеогликанов примерно 80 таких субъединиц посредством связующих белков соединены с длинной молекулой гиалу-роновой кислоты, располагаясь с интервалом примерно 30 нм. В матриксе хряща агрегаты протеогликанов объединяются в еще более крупные образования - суперагрегаты. В расправленном состоянии объем протеогликанов хряща составляет 50 мл/1 г ткани. Протеогликаны свя зьшают большое количество воды, имеющейся в хряще, что обеспечивает его упругость. С возрастом эта способность протеогликанов хряща снижается, с чем связывают ухудшение его механических свойств. Однако протеогликаны в гиалиновом хряще взрослого способны медленно обновляться. 42. Клетки костной ткани, их строение и функции.

Различают три типа клеток костной ткани:

  • остеобласты;

  • остеоциты;

  • остеокласты.

Остеобласты — стволовые клетки, образующие костную ткань (остеогенные клетки). Остеобластов очень много в растущей кости, особенно под надкостницей и в области эпифизарного хряща.

У взрослого человека, когда рост костей закончен, эти клетки встречаются только в участках восстановления костной ткани (например, при переломах и трещинах костей).

Остеобласты образуют промежуточное вещество кости. Оно состоит из пучков коллагеновых волокон, пропитанных минеральными солями. При сочетании органических и неорганических веществ создается упругая и твердая конструкция.

Промежуточное вещество в виде тонких концентрических пластинок образует цилиндры — остеоны. В центре цилиндра находится канал с кровеносными капиллярами — гаверсов канал.

Остеобласты постепенно окружаются пластинами промежуточного вещества и превращаются в остеоциты (костные клетки), которые залегают в остеонах.

Остеоциты имеют крупное ядро и множество отростков. Тела клеток расположены в костных полостях - лакунах, а отростки - в костных канальцах. Многочисленные костные канальцы соединяются друг с другом (каналы Фолькмана), пронизывают всю костную ткань, сообщаются с периваскулярными пространствами (пространства вокруг кровеносных сосудов), и образуют дренажную систему костной ткани.

Функция: обмен веществ между клетками и тканевой жидкостью и между клетками и межклеточным веществом.

Остеокласты — клетки, разрушающие старые и поврежденные костные клетки. Они выделяют ферменты, растворяющие коллагеновые волокна и минеральные соли.

Таким образом, в каждой кости в различные возрастные периоды имеется определенное количественное сочетание клеточных элементов: остеобластов, остеоцитов и остеокластов, которые создают новое костное вещество, разрушают старое и обеспечивают стабильность обмена кости. 43. Межклеточное вещество костной ткани, его строение и функции.

Межклеточное вещество костной ткани содержит коллагеновые волокна, которые пропитаны минеральными солями, главным образом - фосфатом кальция Ca3(PO4)2 и кристаллами гидроксиапатита.

Минеральный компонент обеспечивает прочность кости. Благодаря нему костная ткань выполняет опорную функцию и способна выдерживать значительные нагрузки.

С возрастом содержание минерального компонента уменьшается (как и другого - органического компонента), в результате кость становится более ломкой и хрупкой, возникает склонность к переломам. Истончение костной ткани называется остеопороз (от греч. osteon - кость + греч. poros - пора). 44. Структурная и функциональная характеристика Т-лимфоцитов.

Решающее событие в развитии Т-лимфоцитов — формирование антигенраспознающего Т-клеточного рецептора — происходит только в тимусе. Для обеспечения возможности распознавания любого антигена нужны миллионы различных по специфичности антигенраспознающих рецепторов. Формирование огромного разнообразия антигенраспознающих рецепторов возможно благодаря перестройке генов в процессе пролиферации и дифференцировки клеток-предшественниц. По мере созревания Т-лимфоцитов на их поверхности появляются ан-тигенраспознающие рецепторы и другие молекулы, опосредующие их взаимодействие с антигенпредставляющими клетками. Так, в распознавании собственных молекул главного комплекса гистосовместимости наряду с Т-клеточным рецептором участвуют молекулы CD4 или CD8. Межклеточные контакты обеспечиваются наборами поверхностных адгезионных молекул, каждой из которых соответствует молекула — лиганд на поверхности другой клетки. Как правило, взаимодействие Т-лимфоцита с антигенпредставляющей клеткой не ограничивается распознаванием антигенного комплекса Т-клеточным рецептором, а сопровождается связыванием других попарно комплементарных поверхностных «костимулирующих» молекул.

Сочетание поверхностных молекул лимфоцитов, которые принято обозначать порядковыми номерами «кластеров дифференцировки» (clusters of differentiation — CD), обозначается как «поверхностный фенотип клетки», а отдельные поверхностные молекулы называют «маркерами», так как они служат метками конкретных субпопуляций и стадий дифференцировки Т-лимфоцитов. Так, например, на поздних этапах дифференцировки одни Т-лимфоциты утрачивают молекулу CD8 и сохраняют только CD4, а другие утрачивают CD4, а сохраняют CD8. Поэтому среди зрелых Т-лимфоцитов различают CD4+ (Т-хелперы) и CD8+ (цитотоксические Т-лимфоциты). Среди циркулирующих в крови Т-лимфоцитов клеток с маркером CD4 примерно в два раза больше, чем клеток с маркером CD8. Зрелые Т-лимфоциты несут на поверхности рецепторы для разных цитокинов и рецепторы для иммуноглобулинов (табл. 8.2). При распознавании Т-клеточным рецептором антигена Т-лимфоциты получают сигналы активации, пролиферации и дифференцировки в направлении клеток-эффекторов, т. е. клеток, способных непосредственно участвовать в защитных или повреждающих эффектах. Для этого на их поверхности резко возрастает количество адгезионных и костимулирующих молекул, а также рецепторов для цитокинов. Активированные Т-лимфоциты начинают продуцировать и секретировать цитокины, активирующие макрофаги, другие Т-лимфоциты и В-лимфоциты. После завершения инфекции, сопряженной с усиленной продукцией, дифференцировкой и активацией Т-эффекторов соответствующего клона, в течение нескольких дней 90 % эффекторных клеток погибают, поскольку не получают дополнительных сигналов активации. В организме остаются долгоживущие клетки памяти, несущие соответствующие по специфичности рецепторы и способные ответить пролиферацией и активацией на повторную встречу с тем же антигеном.