
Волноводные задачи
Структуры ЭМП, возбуждаемых приземными излучателями в нижней ионосфере, представляют интерес. Некоторые особенности этой структуры будут показаны в данной работе.
Обсуждаемая проблема сводится к ряду волноводных задач (источник и приемник расположены в приземном волноводе) и к проблеме прохождения электромагнитных волн через ионосферу. Для решения волноводных задач используется модель регулярного сферического анизотропного волновода, образованного Землей и ионосферой, свойства которого зависят только от радиального направления (вводим сферическую систему координат г,9,ф с началом в центре Земли). Антенны моделируются элементарными электрическими и магнитными диполями произвольной ориентации. Для ионосферы используется приближение холодной плазмы, нелинейные эффекты не учитываются. В работе используется система СИ и зависимость от времени exp(-iwt).
Волноводные задачи сводятся к решению уравнений Максвелла для полости волновода (вакуума)
rotE = ik𝛞, rot𝛞 = —ik(E + pe/ε0) (1)
для электрических диполей и
rotE = ik(𝛞 + z0pm/μ0), rot𝛞 = -ikE (2)
для магнитных диполей.
В уравнениях (1) и (2) pe и pm — объемные плотности дипольных моментов электрического и магнитного диполей, 𝛞= z0H, а k,ε0, μ0 и z0— соответственно волновое число, диэлектрическая и магнитная проницаемости и характеристический импеданс вакуума. В соответствии с принципом поляризационной двойственности общее решение уравнений Максвелла дается суперпозицией двух фундаментальных решений. Поперечно-магнитное поле описывается электрическим Пe = Пеer, а поперечно-электрическое магнитным Пm = Пmer векторами Герца, направленными по координате разделения r. В области вне источников они имеют следующий вид:
𝛞 е = —iк rotПе, Ее = rot rotПе, (3)
Em = ik rotПm, 𝛞т = rot rotПm.
Граничные условия на верхней стенке волновода при r = d описываются матрицей адмиттанса ионосферы [6]. На нижней стенке при r = а зададим граничные условия, определяемые матрицей приведенного поверхностного импеданса Земли:
(4)
В
выражениях (4) δ
— приведенный поверхностный импеданс
Земли, который полагается одинаковым
для обеих поляризаций. Кроме того, должны
быть выполнены условия ограниченности
полей 𝛞
и Е
при θ = 0, π, и условия убывания полей при
при определении матрицы â.
Решение волноводной задачи для радиального электрического диполя строится методом нормальных волн (в виде разложения по собственным функциям радиального оператора) и в соответствии с принципом поляризационной двойственности описывается электрическим Пе и магнитным Пm потенциалами:
(5)
где s = 1, 2, . . . В выражении (5) Ре — величина дипольного момента электрического диполя, а обозначения v, R(e)v-1/2(кr),R(m)v-1/2(kr),Nv-1/2 при v = vs соответствуют собственным значениям, собственным функциям и норме радиального оператора.
Касательные компоненты электрического и магнитного полей в полости волновода в области вне источников можно найти, дифференцируя потенциалы по координатам в соответствии с (4). Радиальные компоненты полей удобно найти, используя решение спектральной задачи:
(6)
где Пеs, Пms - отдельные члены рядов (5).
Решение волноводных задач для источников других типов опирается на решение для радиального электрического диполя. В случае радиального магнитного диполя используется сформулированный нами принцип перестановочной двойственности для анизотропных сред [1,3], который позволяет построить решение с помощью элементарных перестановок параметров в выражениях для компонент полей радиального электрического диполя. Поля горизонтального (касательного к границам раздела) электрического диполя можно найти, применяя обобщенную теорему взаимности для магнитоактивной среды [7], которую запишем в удобном для нашей задачи виде:
(7)
При этом абсолютные значения дипольных моментов в теореме взаимности для двух электрических диполей полагаются одинаковыми и обозначаются Ре, как и аналогичные значения для магнитных диполей Рm; величина g равна g = Z0 РеРm-1 . В выражениях (7) r1 и r2 — две любые пространственные точки. Индексы е и m у компонент полей относятся к электрическим и магнитным диполям соответственно, так что ЕƐeζ (r1, r2, Н0), 𝛞Ɛeζ (r1, r2, Н0), например, — Ɛ-компоненты полей, создаваемые в точке r2 расположенным точке r1 электрическим диполем с дипольным моментом Ре, ориентированным вдоль орта eζ (Ɛ,ζ = r,θ,φ).
Радиальные компоненты электрического (магнитного) поля горизонтального электрического диполя можно найти, используя теоремы взаимности для такого диполя и вспомогательного радиального электрического (магнитного) диполя. Далее с помощью выражения (6) находятся потенциалы, с помощью которых, определяются касательные компоненты электрического и магнитного полей. Аналогично находится поля горизонтального магнитного диполя.
Что
касается задачи прохождения волн через
сферически слоистую ионосферу, то
асимптотическое разделение переменных
в уравнениях Максвелла с тензором
относительной комплексной диэлектрической
проницаемости ионосферы
m
позволяет свести их к системе четырех
связанных обыкновенных дифференциальных
уравнений первого порядка с переменными
коэффициентами для касательных компонент
электрического и магнитного полей.
(8)
По
форме система похожа на ту, которая
описывают прохождение плоских волн
через однородную среду [6]. Отличие
заключается в том, что свойства среды
и угол падения волны на ионосферу зависят
от радиальной координаты.
Рис. 2. Зависимости |Eɛ (H)| и |𝛞ɛ (H)| для mθ диполя, день, 10кГц
Из
четырех линейно независимых решений
граничным условиям при
от
удовлетворяют два, которые позволяют
ввести матричный адмиттанс и получить
для его элементов систему дифференциальных
уравнений. Адмиттанс несет в себе
информацию об обоих линейно независимых
решениях, так что для вычисления, â
= â(v)
при каждой итерации достаточно одного
интегрирования. Начальные условия
задаются на некоторой высоте r
=
r0,
где
применимо приближение WKB.
Использование матричного адмиттанса
дает преимущество при численном расчете
собственных значений радиального
оператора.