
- •Глава I
- •§ 2. Импеданс слоя конечной толщины
- •§ 3. Волновой импеданс воздуха
- •§ 3. Волновой импеданс воздуха
- •§ 4. Изображение результатов в комплексной плоскости
- •§ 4. Изображение результатов в комплексной плоскости
- •§ 5. Геометрическое изображение cth у/
- •§ 5. Геометрическое изображение cth у/
- •В плоскости г.
- •Поглощения а0.
- •§ 7. Волновой импеданс среды с внутренним трением
- •§ 7. Волновой импеданс среды с внутренним трением
- •2 Звукопоглощающие материалы
- •§ 7. Волновой импеданс среды с внутренним трением
- •Случай резко селективного поглощения.
- •§ 8. У равнение распространения волн в пористом материале
- •§ 8. Уравнение распространения волн в пористом материале с твердым скелетом
- •Фиг. 15. Потери при колеба ниях, гистерезис.
- •§ 8. У равнение распространения волн в пористом материале
- •Фиг. 16. К понятию структурного фактора.
- •Три образца, обладающие одной и той же пористостью h и сопротивлением о, но имеющие различные структурные факторы k.
- •2) С этим принципиальным высказыванием авторов нельзя согласиться, по крайней мере в отношении материалов с простейшей структурой. (Прим, ред.)
- •§ 9. Постоянная сопротивления с
- •§ 9. Постоянная сопротивления з
- •Глава II
- •Влияние вязкости и теплопроводности на распространение звука в пористых средах
- •§ 1. Распространение звука в цилиндрических трубах и порах
- •§ 2. Расчет плотности при пренебрежении тепловыми эффектами
- •§ Зо упругость воздуха в цилиндре (при пренебрежении вязкостью)
- •§ 3. Упругость воздуха в цилиндре
- •§ 3. Упругость воздуха в цилиндре
- •3 Звукопоглощающие материалы
- •§ 4. Применение теории кирхгофа к распространению звука в цилиндрических трубах и порах
- •§ 4. Применение теории Кирхгофа к распространению звука
- •§ 4. Применение теории Кирхгофа к распространению звука 37 Подстановка (2.25) в (2.17) дает 1л0±ы)_ I q3 (tX2r)
- •§ 5. Применение теории Кирхгофа для пористых сред
- •§ 6. Обсуждение теоретических результатов Корринга, Кронига и Смита 41
- •§ 6. Обсуждение теоретических результатов корринга, #он||а и смита ф
- •§ 9. Опытная проверка теоретических результатов
- •§ 9, Опытная проверка теоретических результатов 47
- •4 Звукопоглощающие материалы
- •§ 1. Пористые материалы с упругим скелетом [13, 14]
- •Первый член в правой части (3.1) представляет собой силу инер- ции, а второй член — силу, с которой воздух действует на ске-
- •§ 2. Бегущие волны в пористой среде с упругим скелетом
- •§ 3. Графическое изображение корней г-уравнения
- •§ 3. Графическое изображение корней V-уравнения
- •С отрицательно
- •§ 3. Графическое изображение корней V-уравнения
- •60 Гл. III. Теория поглощения звука пористыми слоями
- •Акустические штукатурки
- •*) Технические единицы метр—килограмм (масса)—секунда. (Прим, ред.)
- •§ 5. Слой с закрытой передней поверхностью
- •§ 5. Слой с закрытой передней поверхностью
- •5 Звукопоглощающие материалы
- •Фиг. 25. Улучшение поглощения при покрывании поверхности податливого слоя.
- •§ 5. Слой с закрытой передней поверхностью
- •Фиг. 27. Импедансный контур покрытого слоя со слоем воздуха позади толщиной 78 мм. Указаны частоты в сотнях герц.
- •§ 6. Слой с открытой передней поверхностью
- •§ 6. Слой с открытой передней поверхностью
- •§ 7. Упругий слой на подкладке, отличающейся от твердой стенки 71
- •§ 7. Упругий слой, лежащий на подкладке, отличающейся от твердой стенки
- •Глава IV
- •Экспериментальное определение постоянных, характеризующих пористые материалы
- •§ 2. Пористость
- •§ 2. Пористость
- •' Пористый образец
- •Фиг. 30. Прибор Леонарда для измерения пористости.
- •§ 3. Воздушное сопротивление
- •§ 3. Воздушное сопротивление
- •§ 4. Модуль сжатия
- •§ 5. Результаты измерений комплексной упругости
- •§ 5. Результаты измерений комплексной упругости
- •§ 5. Результаты измерений комплексной упругости
- •Глава V
- •Измерение нормального импеданса и коэффициента поглощения
- •§ 1. Введение
- •§ 2. Интерферометр постоянной длины
- •§ 2. Интерферометр постоянной длины
- •Фиг. 33. Интерферометр постоянной длины.
- •Фиг. 34. Общий вид интерферометра постоянной длины.
- •§ 3. Метод Вента а Бсделла
- •Фиг. 35. Разрез микрофона, вмонтированного в стейку трубы интерферометра.
- •§ 3. Метод вента и беделла [36]
- •§ 4. Метод ширины максимума давления вблизи излучателя [27]
- •§ 5. Интерферометры, в которых измеряется реакция на излучатель 85
- •§ 5. Интерферометры, в которых измеряется реакция на излучатель
- •§ 5. Интерферометры, в которых измеряется реакция на излучатель 87
- •§ 6. Практическое определение коэффициента поглощения
- •§ 6. Практическое определение коэффициента поглощения
- •§ 6. Практическое определение коэффициента поглощения
- •8. Геометрический величин d, dVl I.
- •§ 7. Импедансный индикатор гелюка
- •Фиг. 40, Излучатель с антирупором для импе- дансного индикатора.
- •§ 7. Импедансный индикатор Гелюка
- •§ 8. Детали импедансного индикатора
- •§ 8. Детали импедансного индикатора
- •Грамма к фиг. 44.
- •Звуковоглешаюшие материалы
- •Фиг. 49, Скелетная схема импедансного индикатора.
- •Глава VI опытные данные. Сравнение с теорией
- •§ 1. Введение
- •§ 2. Опыты на искусственных образцах
- •Фиг. 50. Образец поглощающей конструкции из стеклянных трубок с наклоном 60°.
- •§ 2. Опыты на искусственных образцах
- •Частоты для случая импедансных контуров фиг. 51.
- •§ 4. Пористые материалы с твердым скелетом
- •Фиг. 53. Образец с искусственными боковыми порами.
- •§ 3. Непроницаемые материалы с высокой упругостью
- •§ 4. Пористые материалы с твердым скелетом
- •Фиг. 55. Импедансные контуры пористых материалов с упругим скелетом:
- •§ БЯюристые материалы с упругим скелетом и открытыми порами
- •§ 6. Пористые материалы с упругим скелетом и закрытой передней поверхностью
- •§ 7. Пористый материал, расположенный на расстоянии от стенки 111
- •§ 7. Пористый материал,
- •§ 7. Пористый материал, расположенный на расстоянии от стенки 113
- •Цифры около кривых указывают толщину зазора.
- •Фиг. 67, Графический способ построения импеданса для многослой- ной системы.
- •§ 7. Пористый материал, расположенный на расстоянии от стенки 115
- •Фиг. 68. Зависимость коэффициента поглощения от частоты для покрытого образца пористой резины толщиной 78 мм при наличии воздушного зазора между стенкой:
- •Фиг. 70. Зависймость коэффициента поглощения от частоты для покрытого образца пористой резины толщиной 78 мм при наличии железной сетки, изображенной на фиг. 69, 6.
- •§ 8. Целотекс с-4
- •§ 8. Целотекс с-4
- •Фиг. 71. Импедансный контур для целотекса с-4. Указаны частоты в сотнях герц.
- •Фиг. 72. Эквивалентная схема для целотекса с-4.
- •Глава VII резонансные звукопоглотители
- •§ 1. Введение
- •§ 1. Введение
- •§ 2. Резонатор в безграничной стенке
- •§ 2. Резонатор в безграничной стенке
- •§ 2Ь Резонатор в безграничной стенке
- •Фиг. 77.1гЗависимость параметров, характеризующих эффективность отдельного резонатора, от внутреннего сопротивления и проводимости g.
- •§ 2. Резонатор в безграничной стенке
- •9 Звукопоглощающие материалы
- •§ 3. Практическое использование конструкций с одним резонатором 131
- •§ 3. Практическое использование конструкций с одним резонатором
- •§ 4. Перфорированный экран перед твердой стенкой
- •§ 4. Перфорированный экран перед твердой стенкой
- •§ 4. Перфорированный экран перед твердой стенкой
- •§ 5. Правила проектирования перфорированных звукопоглощающих покрытий
- •§ 5. Правила проектирования перфорированных покрытий
- •Фиг. 83. Зависимость между проводимостью g, диаметром круглого циЩндрического отверстия d и толщиной экрана /.
- •§ 7. Опытные данные
- •§ 6. Проектирование поглощающих экранов с щелями
- •§ 7. Опытные данные
- •§ 7. Опытные данные
- •§ 8. Комбинации резонаторов
- •§ 8. Комбинации резонаторов
- •§ 8. Комбинации резонаторов
- •Глава VIII
- •§ 1. Введение
- •Реверберационный метод. В этом хорошо известном случае падение звука происходит более или менее диффузно. Трактовка этого случая чрезвычайно трудна [67].
- •§ 2. Наклонное падение на поверхность с локальной реакцией
- •§ 2. Наклонное падение на поверхность с локальной реакцией
- •§ 2. Наклонное падение на поверхность с локальной реакцией 155
- •§ 3. Наклонное падение на поверхность с одним резонатором
- •Литература
- •Цена 8 р. 40 к. (по прейскуранту 1952 г.)
- •Москва, Трехпрудный пер., 9.
вый
угол в. материале непосредственно у
границы с воздухом может быть найден
по круговой диаграмме (из известного
значения мнимого импеданса) в
масштабе, увеличенном в \/
k/h
раз,
или, разделив импеданс на |/ k/hy
можно
определить фазовый угол по первоначальной
диаграмме. Этот путь приводит к тому
же результату, но значительно более
удобен. При переходе к внешней границе
поглощающего слоя фазовый угол
увеличивается еще на величину, равную
с1(4к/\'),
где
X' —длина волны в материале. При
резонансе полный фазовый угол должен
равняться (2м + 1)тг. Как мы видим, фиг. 11
использовалась лишь для
Фиг.
66.
Зависимость коэффициента поглощения
от частоты для
слоя
акустической штукатурки толщиной 21 мм
с воздушным зазором
(^стат.^31000
МКС).
наглядности
рассуждений. Все результаты могут быть
представлены в чисто математическом
виде.
Связь
между мнимым импедансом г и соответствующим
значением А, определяемая из фиг.
10, имеет вид
z
= jW
ctg^-
Из
условия непрерывности импеданса на
границе поглощающий слой — воздух
со стороны зазора
fctA^
=
foCtg
W
находим
^материал,
поскольку
остальные величины известны. Прибавляя
еще d{4я/Х')
и полагая результирующее значение Д
8
Звукопоглощающие материалы§ 7. Пористый материал, расположенный на расстоянии от стенки 113
Цифры около кривых указывают толщину зазора.
114
Г
л. VI. Опытные данные. Сравнение с теорией
равным
{2п
+
1)тс, получаем трансцендентное уравнение
,
О)/
tg-r
tg
o>d
V
k
У
k
из
которого и определяются резонансные
частоты [35].
Иногда
оказывают большое влияние даже тонкие
слои воздуха (фиг. 66); неучетом этого
обстоятельства часто и объясняются
расхождения между результатами.
При
нахождении импеданса в случае, когда
затуханием нельзя пренебрегать [46],
удобно пользоваться комбинацией
графического и аналитического
методов. Поясним это на примере
двухслойной системы, за которой
находится слой воздуха (фиг. 67). Импедансный
контур строится в плоскости комплексного
переменного z/W,
поэтому надо иметь в виду, что W
меняется
при переходе от одного слоя к другому.
Значение z/W0
в
плоскости z/W
для
точки 1
(см. фиг. 67, справа) определяется сразу
же, при учете, что в этой точке фаза
равна / (4п/Х0)*
При переходе от точки 1
к точке 2, W
испытывает
скачок, что на диаграмме в плоскости
переменного z/W
соответствует
скачку 7 — 2.
Фиг. 67, Графический способ построения импеданса для многослой- ной системы.