Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Грушевицкая Садохин КСЕ Учебник.doc
Скачиваний:
582
Добавлен:
10.02.2015
Размер:
3.54 Mб
Скачать

Электромагнитное взаимодействие

Этот вид взаимодействия также обладает универсальным характером и существует между любыми телами, но, в отличие от гравитационного взаимодействия, которое всегда выступает в виде притяжения, электромагнитное взаимодействие может проявляться и как притяжение (между разноименными зарядами), и как отталкивание (между одинаковыми зарядами).

Благодаря электромагнитным связям возникают атомы, молекулы и макроскопические тела. Все химические реакции представляют собой проявление электромагнитных взаимодействий, являются результатами перераспределения связей между атомами в молекулах, перестройки электронных оболочек атомов и молекул, а также количества и состава атомов в молекулах разных веществ. Изучением этих процессов занимается химия.

На заре развития науки об электричестве электрические и магнитные компоненты этого взаимодействия рассматривались как независимые, не связанные между собой родством. Максвелл доказал, что обе силы - это проявление одного и того же феномена. Так в науке впервые было показано, что за внешним различием природных сил может скрываться их глубокая общность. Электродинамика Максвелла явилась законченной классической теорией электромагнетизма, сохраняющей свое значение и в наши дни.

Современная физика создала более совершенную и точную теорию электромагнетизма, в которой учтены и квантово-полевые аспекты явления. Эта теория названа квантовой электродинамикой. Так же как физике неизвестна причина существования массы, так же ей неизвестна и природа электромагнитного заряда. Поэтому теория начинается с постулирования существования этого заряда. Заряд создает поле, квантом которого служит безмассовый бозон - фотон со спином, равным 1. Электрический заряд проявляется в двух разновидностях:

заряд, присущий электрону, назван отрицательным; заряд, присущий протону и позитрону, назван положительным. Взаимодействие зарядов обеспечивается обменом виртуальных фотонов. В случае разноименных зарядов обмен создает эффект притяжения, а в случае одноименных - отталкивания. Во всех процессах с участием электромагнитных зарядов выполняется закон сохранения заряда, импульса, энергии и др.

Слабое взаимодействие

Это третье фундаментальное взаимодействие, существующее только в микромире. Оно ответственно за превращение одних частиц-фермионов в другие, при этом цвет слабо взаимодействующих пептонов и кварков не меняется.

Типичный пример слабого взаимодействия - процесс бета-распада, в ходе которого свободный нейтрон в среднем за 15 минут распадается на протон, электрон и электронное антинейтрино. Распад вызывается превращением внутри нейтрона кварка аромата d в кварк аромата u. Вылетающий электрон обеспечивает сохранение суммарного электрического заряда, а антинейтрино позволяет сохранить суммарный механический импульс системы.

Описываемые нами полевые представления о слабом взаимодействии выглядят следующим образом. Постулируется существование фундаментального слабого заряда, присущего некоторым частицам из класса пептонов и кварков, но не всем. Слабый заряд образует три разновидности поля с тремя обменными бозонными частицами, имеющими значительную массу. Слабое взаимодействие переносится векторными бозонами и имеет очень малый

радиус действия порядка 10-15см.

Первоначально созданная теория слабого взаимодействия оказалась несовершенной. Возникли подозрения, что трудности теории удастся преодолеть, если допустить, что слабое и электромагнитное взаимодействия - это разные проявления одного взаимодействия наподобие того, как электричество и магнетизм - два проявления единой сущности. Эту идею в 60-х годах воплотили в теорию С. Вайнберг и А. Салам. Теория единого электрослабого взаимодействия позволила решить главные проблемы, связанные со слабым взаимодействием.

Эта теория исходит из существования единого фундаментального заряда, отвечающего одновременно и за слабое, и за электромагнитное взаимодействия. При очень высоких температурах (энергиях) структура вакуума нарушается и не может помешать проявлению такого заряда. Тогда слабое и электромагнитное взаимодействия сливаются воедино, а заряд порождает общее поле, квантом которого служит безмассовая бозонная частица с бесконечным радиусом действия. При понижении температуры наступает критический момент, после которого вакуум переходит в иную, более упорядоченную модификацию, что меняет характер его взаимодействия с электрослабым зарядом. В результате заряд распадается на две части, одна из которых предстает как электромагнитный заряд, а другая - как слабый заряд. Безмассовая бозонная частица распадается на четыре составляющих. Выделяется бозон электромагнитного воздействия, он остается безмассовой частицей - фотоном. А трем полям слабого заряда соответствуют три тяжелых бозона, получивших свои массы в результате взаимодействия со структурой модифицированного вакуума.

Эта теория влечет ряд следствий, допускающих экспериментальную проверку. Так, она предсказала значения масс векторных бозонов, которые были подтверждены в ходе эксперимента на ускорителе. Руководителям этого эксперимента была присуждена Нобелевская премия в 1984 г.