
- •Т.Г.Грушевицкая, а.П.Садохин
- •Тема 1. Наука и ее роль в жизни общества
- •Тема 1 наука и ее роль в жизни общества проблема определения науки
- •Соотношение науки, философии и религии
- •Структура науки и ее функции
- •Критерии научности знания
- •Тема 2 научная теория. Структура и основания теории
- •Теория как форма научного знания. Теория и научные программы
- •Структура научной теории
- •Гносеологические предпосылки науки
- •Классификация научных теорий
- •Научные понятия и способ их образования
- •Введение и исключение научных абстракций
- •Тема 3 методы научного познания. Развитие научного знания
- •Методы научного познания
- •Законы науки
- •Развитие научного знания
- •Специфика научных революций
- •Тема 4 возникновение науки. Появление первых научных программ проблема начала науки
- •Научные знания на древнем востоке
- •Начало науки. Античная наука
- •Первые научные программы античности
- •Тема 5 формирование основ естествознания в эпоху средневековья и возрождения
- •Основные черты средневекового мировоззрения
- •Наука и научное познание в средние века
- •Революция в мировоззрении в эпоху возрождения
- •Тема 6 научная революция XVI-xvh вв. И становление классической науки
- •Галилей и его роль в возникновении современной науки
- •Основные аспекты научной революции
- •Исаак ньютон и завершение научной революции
- •Тема 7 специфика и природа современной науки
- •Особенности классической науки
- •Наука XIX века
- •Новейшая революция в науке
- •Основные черты современной науки
- •Кризис современной науки. Постнеклассическая наука
- •Тема 8 физическая картина мира
- •Механическая картина мира
- •Электромагнитная картина мира
- •Становление современной физической картины мира
- •Тема 9 структурные уровни организации материи структурность и системность материи
- •Поле и вещество
- •Классификация элементарных частиц
- •Тема 10 физическое взаимодействие проблемы учения о взаимодействии и движении
- •Общая характеристика физических взаимодействий
- •Гравитационное взаимодействие
- •Электромагнитное взаимодействие
- •Слабое взаимодействие
- •Сильное взаимодействие
- •Теории большого объединения и суперобъединения
- •Тема 11 концепции пространства и времени в современном естествознании
- •Развитие представлений о пространстве и времени
- •Теория относительности
- •Единство и многообразие свойств пространства и времени
- •Тема 12 детерминизм и причинность в современной физике. Динамические и статистические законы
- •Динамические законы и теории и механический, детерминизм
- •Статистические законы и теории и вероятностный детерминизм
- •Соотношение динамических и статистических законов
- •Тема 13 принципы современной физики
- •Принцип симметрии и законы сохранения
- •Принцип соответствия
- •Принцип дополнительности и соотношение неопределенностей
- •Принцип суперпозиции
- •Основы термодинамики
- •Тема 14 космологические модели вселенной что такое космология?
- •Начало научной космологии
- •Космологические парадоксы
- •Неевклидовы геометрии
- •Модель расширяющейся вселенной
- •Некоторые трудности гипотезы расширяющейся вселенной
- •Тема 15 эволюция вселенной рождение вселенной
- •Ранний этап эволюции вселенной
- •Структурная самоорганизация вселенной
- •Образование солнечной системы
- •Тема 16 проблемы самоорганизации материи формирование идеи самоорганизации
- •Понятие самоорганизации
- •Основы синергетики
- •Неравновесная термодинамика и. Пригожина
- •Тема 17 становление и развитие химической картины мира возникновение химии
- •Алхимия
- •Арабская алхимия
- •Западноевропейская алхимия
- •Период зарождения научной химии
- •Теория флогистона
- •Закон сохранения массы лавуазье
- •Открытие основных законов химии
- •Химия как наука
- •Тема 18 современные концепции химии структура химии
- •Взаимосвязь химии с физикой
- •Проблема химического элемента
- •Концепции структуры химических соединений
- •Учение о химических процессах
- •Эволюционная химия
- •Взаимосвязь химии с биологией
- •Тема 19 происхождение и сущность жизни история проблемы
- •Концепция происхождения жизни а.И. Опарина
- •Современные концепции происхождения и сущности жизни
- •Сущность и определение жизни
- •Появление жизни на земле
- •Формирование биосферы земли
- •Тема 20 эволюция органического мира
- •Становление идеи развития в биологии
- •Концепция развития ж.-б.Ламарка
- •Теория катастроф ж. Кювье
- •Эволюционная теория ч.Дарвина
- •Антидарвинизм конца XIX-начала XX века
- •Тема 21 современные теории эволюции
- •Основы генетики
- •Синтетическая теория эволюции (стэ)
- •Тема 22 человек как предмет естествознания
- •Происхождение человека
- •Сущность человека
- •Телесность и здоровье человека
- •Тема 23 человек, биосфера и космос
- •Человек и космос
- •Космизация современной науки и философии
- •Антропный принцип
- •Тема 24 на пути к ноосфере
- •Современные концепции экологии
- •Концепция ноосферы и устойчивого развития
Электромагнитное взаимодействие
Этот вид взаимодействия также обладает универсальным характером и существует между любыми телами, но, в отличие от гравитационного взаимодействия, которое всегда выступает в виде притяжения, электромагнитное взаимодействие может проявляться и как притяжение (между разноименными зарядами), и как отталкивание (между одинаковыми зарядами).
Благодаря электромагнитным связям возникают атомы, молекулы и макроскопические тела. Все химические реакции представляют собой проявление электромагнитных взаимодействий, являются результатами перераспределения связей между атомами в молекулах, перестройки электронных оболочек атомов и молекул, а также количества и состава атомов в молекулах разных веществ. Изучением этих процессов занимается химия.
На заре развития науки об электричестве электрические и магнитные компоненты этого взаимодействия рассматривались как независимые, не связанные между собой родством. Максвелл доказал, что обе силы - это проявление одного и того же феномена. Так в науке впервые было показано, что за внешним различием природных сил может скрываться их глубокая общность. Электродинамика Максвелла явилась законченной классической теорией электромагнетизма, сохраняющей свое значение и в наши дни.
Современная физика создала более совершенную и точную теорию электромагнетизма, в которой учтены и квантово-полевые аспекты явления. Эта теория названа квантовой электродинамикой. Так же как физике неизвестна причина существования массы, так же ей неизвестна и природа электромагнитного заряда. Поэтому теория начинается с постулирования существования этого заряда. Заряд создает поле, квантом которого служит безмассовый бозон - фотон со спином, равным 1. Электрический заряд проявляется в двух разновидностях:
заряд, присущий электрону, назван отрицательным; заряд, присущий протону и позитрону, назван положительным. Взаимодействие зарядов обеспечивается обменом виртуальных фотонов. В случае разноименных зарядов обмен создает эффект притяжения, а в случае одноименных - отталкивания. Во всех процессах с участием электромагнитных зарядов выполняется закон сохранения заряда, импульса, энергии и др.
Слабое взаимодействие
Это третье фундаментальное взаимодействие, существующее только в микромире. Оно ответственно за превращение одних частиц-фермионов в другие, при этом цвет слабо взаимодействующих пептонов и кварков не меняется.
Типичный пример слабого взаимодействия - процесс бета-распада, в ходе которого свободный нейтрон в среднем за 15 минут распадается на протон, электрон и электронное антинейтрино. Распад вызывается превращением внутри нейтрона кварка аромата d в кварк аромата u. Вылетающий электрон обеспечивает сохранение суммарного электрического заряда, а антинейтрино позволяет сохранить суммарный механический импульс системы.
Описываемые нами полевые представления о слабом взаимодействии выглядят следующим образом. Постулируется существование фундаментального слабого заряда, присущего некоторым частицам из класса пептонов и кварков, но не всем. Слабый заряд образует три разновидности поля с тремя обменными бозонными частицами, имеющими значительную массу. Слабое взаимодействие переносится векторными бозонами и имеет очень малый
радиус действия порядка 10-15см.
Первоначально созданная теория слабого взаимодействия оказалась несовершенной. Возникли подозрения, что трудности теории удастся преодолеть, если допустить, что слабое и электромагнитное взаимодействия - это разные проявления одного взаимодействия наподобие того, как электричество и магнетизм - два проявления единой сущности. Эту идею в 60-х годах воплотили в теорию С. Вайнберг и А. Салам. Теория единого электрослабого взаимодействия позволила решить главные проблемы, связанные со слабым взаимодействием.
Эта теория исходит из существования единого фундаментального заряда, отвечающего одновременно и за слабое, и за электромагнитное взаимодействия. При очень высоких температурах (энергиях) структура вакуума нарушается и не может помешать проявлению такого заряда. Тогда слабое и электромагнитное взаимодействия сливаются воедино, а заряд порождает общее поле, квантом которого служит безмассовая бозонная частица с бесконечным радиусом действия. При понижении температуры наступает критический момент, после которого вакуум переходит в иную, более упорядоченную модификацию, что меняет характер его взаимодействия с электрослабым зарядом. В результате заряд распадается на две части, одна из которых предстает как электромагнитный заряд, а другая - как слабый заряд. Безмассовая бозонная частица распадается на четыре составляющих. Выделяется бозон электромагнитного воздействия, он остается безмассовой частицей - фотоном. А трем полям слабого заряда соответствуют три тяжелых бозона, получивших свои массы в результате взаимодействия со структурой модифицированного вакуума.
Эта теория влечет ряд следствий, допускающих экспериментальную проверку. Так, она предсказала значения масс векторных бозонов, которые были подтверждены в ходе эксперимента на ускорителе. Руководителям этого эксперимента была присуждена Нобелевская премия в 1984 г.