Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электромагнетизм .doc
Скачиваний:
31
Добавлен:
10.02.2015
Размер:
1.83 Mб
Скачать

§ 5. Энергия заряженного проводника. Энергия электрического поля.

  1. Энергия Wзаряженного проводника определяется величиной работы внешних сил, которую необходимо совершить для того, чтобы зарядить данный проводник

(или величиной работы, которую может совершить электрическое поле заряженного проводника при его разрядке).

Энергия Wможет быть выражена через зарядqпроводника, потенциал его φ и электроемкость С следующими соотношениями:

,

,

  1. Энергия заряженного конденсатора:

,

,

,

где С— емкость конденсатора,U— разность потенциалов на его пластинах.

Объемная плотность энергии электростатического поля

§ 6. Основные законы постоянного тока

  1. Сила постоянного тока Iесть скалярная физическая величина, численно равная количеству электричества, прошедшему через поперечное сечение проводника в единицу времени:

,

где q— количество электричества, прошедшее через поперечное сече­ние проводника за времяt.

Плотность электрического токаесть вектор направленный по току, а его модуль числено равен силе тока приходящейся на единицу площади поперечного сечения проводника:

.

  1. Закон Ома для участка цепи, не содержащей источников тока. Сила тока Iв цепи, не содержащей источников тока, пропорциональна разности потенциалов φ12на концах проводника и обратно пропорциональна сопротивлениюrпроводника:

.

Удельная проводимость связана с удельным сопротивлением соотношением.

Зависимость удельного сопротивления проводника от температуры выражается соотношением

ρ=ρо(1+αt),

где ρо— удельное сопротивление при О °С, ρ — удельное сопротивление при температуреt °C, α — температурный коэффициент сопротивления.

Общее сопротивление Rпроводников, соединенных последовательно, равно сумме сопротивлений отдельных проводников:.

Общее сопротивление Rпроводников, соединенных параллельно определяется по формуле :.

Электродвижущая сила, действующая в цепи .

Закон Ома для замкнутого контура, содержащего э. д. с. (закон Ома для полной цепи): сила тока Iв замкнутом контуре, содержащем э. д. с., прямо пропорциональна

э. д. с. источника тока и обратно пропорциональна сумме сопротивления Rвнешней части контура и внутреннего сопротивленияrсамого источника:

.

Закон Ома для участка цепи, содержащего э. д. с.,

,

Закон Ома в дифференциальной форме

  1. Правила Кирхгофа

1). Алгебраическая сумма сил токов, сходящихся в узле, равна нулю:

.

Узлом называется точка, в которой сходятся несколько провод­ников. Токи, направленные к узлу, берутся со знаком «плюс», токи, направленные от узла, берутся со знаком «минус». Число уравнений, составляемых по первому правилу Кирхгофа при расчете цепей, на единицу меньше, чем число узлов.

2). В любом замкнутом контуре алгебраическая сумма падений напряжений (т. е. произведений сил токов Iiна соответствующее сопротивлениеRi) равна алгебраической сумме э. д. с., находящихся в этом контуре:

При составлении уравнений по второму правилу Кирхгофа необходимо соблюдать следующее правило знаков:

а) если ток по направлению совпадает с выбранным направлением обхода контуров, то соответствующее произведение IiRiвходит в уравнение со знаком «плюс», в противном случае произведениеIiRi\входит в уравнение со знаком «минус»;

б) если э. д. с. повышает потенциал в направлении обхода контура, т. е. если при обходе контура приходится идти от минуса к плюсу внутри источника, то соответствующая э.д.с. входит в уравнение со знаком «плюс», в противном случае — со знаком «минус».

  1. Мощность тока

.

  1. Закон Джоуля — Ленца. Работа электрического тока (тепловое действие тока)

.

где I— сила тока в проводнике,R — сопротивление проводника, U— напряжение на концах проводника, t— время прохождения тока.

Закон Джоуля-Ленца в дифференциальной форме