
- •Векторные системы теория
- •1. Принципы и понятия технологии рекомбинантных молекул. Основные открытия молекулярной биологии, обосновавшие возможность конструирования рекомбинантных молекул.
- •2. Матричные процессы. Репликон и типы репликации днк. Стабильность наследования генетических структур.
- •3. Механизмы реализации генетической информации.
- •4. Молекулярное клонирование как способ исследования структурной организации генетических элементов и систем экспрессии чужеродной генетической информации.
- •5. Понятие вектора. Характеристика основных генетических элементов про- и эукариотических клеток, претендующих на роль векторов.
- •6. Общие свойства клонирующих векторов. Принципы клонирования днк in vivo и in vitro.
- •7. Рестрикционные нуклеазы и их характеристика.
- •8. Способы объединения фрагментов днк. Днк-лигазы. Днк-полимераза
- •12. Концевая трансфераза и ее применение при создании рекомбинантных молекул.
- •13. Векторные молекулы днк. Развитие представлений о векторных молекулах.
- •14. Введение молекул днк в клетки.
- •15. Требования к клеткам-хозяевам рекомбинантных молекул.
- •16. Структурно-генетическая организация полового фактора.
- •17. Плазмиды бактерий и их общие свойства.
- •18. Сегрегационная и структурная нестабильность плазмид.
- •19. Классификация плазмид.
- •20. Плазмиды бактериоциногенности и векторы на их основе.
- •21. Плазмиды лекарственной устойчивости бактерий.
- •22. Конструирование и структура «искусственных» векторов (плазмиды pRsf2124 и рМв9).
- •23. Принцип модульной организации плазмид.
- •24. Мигрирующие элементы и конструирование векторов для клонирования хромосомных генов бактерий in vivo.
- •25. Трансдуцирующие бактериофаги.
- •26. Организация генома бактериофага лямбда.
- •27. Общая и генерализованная трансдукция.
- •28. Характеристики pBr322, ее преимущества и недостатки.
- •29. Векторы на основе репликонов бактериальной плазмиды puc18, puc19.
- •30. Свойства бактериофага лямбда как универсальной системы для клонирования in vivo и in vitro.
- •31. Молекулярные векторы на основе генома бактериофага лямбда.
- •32. Космиды.
- •33. Фазмиды.
- •34. Искусственные хромосомы (рас, вас, yac)
- •35. Конструирование библиотек и клонотек.
- •36. Нитевидные фаги в качестве клонирующих векторов.
- •37. Конструкция и использование векторов на основе нитевидных фагов.
- •38. Векторы, предназначенные для изучения регуляции экспрессии генов.
- •39. Векторы для Bacillus.
- •40. Проблемы плазмидных векторов.
- •41. Челночные векторы.
- •42. Генетическая организация дрожжей.
- •43. Внехромосомные элементы сахаромицетов.
- •44. Введение днк в дрожжевые клетки.
- •45. Векторы для дрожжевых клеток. Требования к вектору.
- •46. Селективные маркеры дрожжей. Принципы клонирования.
- •47. Введение молекул днк в клетки млекопитающих.
- •48. Организация генома вируса sv40. Векторы на основе вируса sv40.
- •49. Основные проблемы при конструировании векторов млекопитающих.
- •50. Векторы для клонирования в растениях.
- •51. Молекулярная биология Ti-плазмиды Agrobacterium tumefaciens.
- •52. Структура т-днк. Использование Ti-плазмиды в качестве векторов для создания трансгенных растений.
- •53. Бинарные системы.
- •54. Вирусы как векторы для растений.
19. Классификация плазмид.
Ответ. Плазмиды – это внехромосомные автономно реплицирующиеся молекулы ДНК, которые не способны самостоятельно существовать вне клетки. Классификация. По молекулярной массе: мелкие, средние и крупные в диапазоне 1 – 100 – 200 кб. Копийность: высококопийные (до 100 и более копий) и низкокопийные (1–2 мегаплазмиды). По специфичности: плазмиды с узким (присутствуют в клетках одного вида бактерий) и широким (в клетках разных видов бактерий) спектром хозяев. По автономности. Автономные плазмиды существуют в цитоплазме бактерий и способны самостоятельно репродуцироваться; в клетке может присутствовать несколько их копий. Интегрированные плазмиды репродуцируются одновременно с бактериальной хромосомой. Интеграция плазмид происходит при наличии гомологичных последовательностей ДНК, при которых возможна рекомбинация хромосомной и плазмидной ДНК (что сближает их с профагами). По способности передаваться от одной клетки к другой: конъюгативные (трансмиссивные); неконъюгативные (мобилизуемые). По совместимости в одной клетке: совместимые; несовместимые (близкородственные). По фенотипическому проявлению признака: криптические (скрытые); некриптические. По детерминированному признаку: R-плазмиды (от англ. resistance – противодействие, содержат гены – r-гены, ответственные за устойчивость к лекарственным препаратам). Обусловленная R-плазмидами лекарственная устойчивость связана: с изменением проницаемости поверхностных структур бактериальной клетки для антибиотиков; с синтезом ферментов, разрушающих или модифицирующих антибиотики (β-лактамазы, ацетилирование хлорамфеникола). Плазмиды патогенности – Ent и Hly (содержат tox-гены, ответственные за синтез токсинов – энтеротоксинов и гемолизинов соответственно). Бактериоциногенные плазмиды (например, Col-плазмида у E. Coli содержат гены, ответственные за синтез бактериоцинов). Бактериоцины – антибиотические вещества белковой природы, синтезируемые бактериями и подавляющие рост и размножение близкородственных микроорганизмов, не лизирую последних. Синтез бактерицинов является для клетки-продуцента летальным, но потенциальные бактерии-продуценты, не продуцирующие их в данный момент, устойчивы к воздействию бактериоцинов. В отличии от других плазмид, факторы бактериоциногенности реже интегрируются в хромосому, редко элиминируются, многие не обладают конъюгативностью. Многие плазмиды, кодирующие образование бактериоцинов, также содержат набор генов, ответственных за конъюгацию и перенос плазмид. Подобные плазмиды относительно крупные (молекулярная масса 25–150*106D), их довольно часто выявляют у грамотрицательных палочек. Большие плазмиды обычно присутствуют в количестве 1–2 копий на клетку. Их репликация тесно связана с репликацией бактериальной хромосомы. F-плазмида (половой фактор/фактор фертильности, содержит гены, контролирующие конъюгацию). При изучении процесса скрещивания бактерий оказалось, что способность клетки быть донором генетического материала связана с присутствием особого F-фактора [от англ. fertility, плодовитость]. F-плазмиды контролируют синтез F-пилей, способствующих спариванию бактерий-доноров (F+) с бактериями-реципиентами (F"). В связи с этим можно указать, что сам термин «плазмида» был предложен для обозначения «полового» фактора бактерий (Джошуа Лёдерберг, 1952). F-плазмиды могут быть автономными и интегрированными. Встроенная в хромосому F-плазмида обеспечивает высокую частоту рекомбинации бактерий данного типа, поэтому их также обозначают как Hfr-плазмиды от англ. high frequency of recombinations, высокая частота рекомбинаций]. Плазмиды биодеградации кодируют ферменты деградации природных (мочевина, углеводы) и неприродных (толуол, камфора, нафталин) соединений, необходимых для использования в качестве источников углерода или энергии, что обеспечивает им селективные преимущества перед другими бактериями данного вида (несут информацию об утилизации некоторых органических соединений, которые бактерии используют в качестве источников углеводов и энергии, например урологические штаммы E. coli содержат плазмиду гидролизации мочевины).