
Molekuljarnaja Biologija Kletki v3
.pdf
291
мы увидим позже, механизм передачи сигнала через такие химические синапсы более гибок и доступен для адаптации, чем прямая электрическая связь, осуществляемая через щелевые контакты (разд. 14.1.7), которая тоже используется, но гораздо реже.
Химический синапс - это место интенсивной биохимической активности, включающей распад, обновление и секрецию белков и других молекул. Однако биохимическим центром нейрона служит тело клетки, где заложены основные «инструкции» по синтезу белка. Поэтому нейрону необходима эффективная внутриклеточная система транспорта молекул из тела клетки к самым отдаленным участкам аксона и дендритов. Как же организована эта транспортная система и какие молекулы переносятся в действительности?
19.1.4. Вновь синтезируемые материалы переносятся из тела нервной клетки в аксоны и дендриты с помощью механизмов медленного и быстрого транспорта [5]
С помощью электронной микроскопии установлено, что тело типичного крупного нейрона содержит огромное количество рибосом, часть которых находится в цитозоле, а часть прикреплена к мембранам гранулярного эндоплазматического ретикулума (рис. 19-5, А). Хотя дендриты часто содержат небольшое количество рибосом, в аксоне их нет, и поэтому белки аксона должны синтезироваться на рибосомах тела клетки (рис. 19-5, Б). Потребности аксона значительны: например, толщина большого мотонейрона человека может достигать 15 мкм при длине
Рис. 19-5. Строение цитоплазмы типичного крупного нейрона (мотонейрона из спинного мозга). А. Схематическое изображение тела клетки при небольшом увеличении; видно, что участки цитоплазмы, богатые рибосомами, расположены между пучками нейрофиламентов и других белков цитоскелета. Б. Электронная микрофотография одного из таких богатых рибосомами участков; которые рибосомы прикреплены к гранулярному эндоплазматическому ретикулуму, другие ни с чем к связаны. В. Электронная микрофотография части поперечного среза аксона; можно видеть большое число микрофиламентов и микротрубочек, но рибосомы отсутсвуют. Мембранные пузырьки передвигаются, вероятно, вдоль ближайших
микротрубочек с помощью механизма быстрого аксонного транспорта. (С любезного разрешения Jennifer La Vail (Б) и John Hopkins (В).)

292
Рис. 19-6. Нейрон как секреторная клетка, у которой место секреции (окончание аксона) расположено на большом расстоянии от места синтеза макромолекул (тела клетки). При такой организации необходим механизм быстрого аксонного транспорта. Из приведенной схемы не следует заключать, что все синаптические пузырьки транспортируются из тела нейрона: в большинстве нейронов они образуются в основном путем повторного использования мембраны в окончании аксона.
1 м, что соответствует объему примерно 0,2 мм3, а это почти в 10000 раз больше объема печеночной клетки. Поскольку в таком нейроне только одно ядро, соотношение цитоплазмы к ДНК в нейроне намного выше, чем в любой другой клетке человеческого организма.
В аксоне в наибольших количествах содержатся белки, образующие микротрубочки, нейрофиламенты (класс промежуточных филаментов) и актиновые филаменты (рис. 19-5, В). Белки цитоскелета доставляются из тела клетки и движутся по аксону со скоростью от 1 до 5 мм в сутки. Это медленный аксонный транспорт (подобный вид транспорта имеется и в дендритах, содержащих несколько иной набор белков, связанных с микротрубочками - см. разд. 11.4.7). Другие белки цитозоля, включая многие ферменты, тоже переносятся с помощью медленного аксонного транспорта, механизм которого не ясен.
Нецитозольные материалы, необходимые в синапсе, такие как секретируемые белки и мембраносвязанные молекулы, перемещаются от тела клетки с помощью гораздо более быстрой разновидности аксонного транспорта. Эти белки и липиды переносятся от мест их синтеза в эндоплазматическом ретикулуме к аппарату Гольджи, расположенному вблизи ядра (часто у основания аксона). Отсюда эти молекулы, «упакованные» в мембранные пузырьки, переносятся путем быстрого аксонного транспорта со скоростью до 400 мм в сутки вдоль путей, образуемых в аксоне и дендритах микротрубочками (разд. 11.4.8). Таким же образом транспортируются митохондрии. Так как этим способом в аксонах и в дендритах перемещаются разные виды белков, полагают, что транспортируемые молекулы распределяются в теле клетки по различным транспортным пузырькам определенных типов (разд. 8.9.4).
К белкам, быстро переносимым по аксону, относятся и белки, предназначенные для высвобождения в синапсе, такие как нейропептиды, выделяемые многими нейронами в качестве нейромедиаторов, часто в сочетании с небелковыми медиаторами. С точки зрения внутренней организации нейроны можно представить как секреторные клетки, в которых место выделения секрета находится на громадном расстоянии от места образования белков и мембран (рис. 19-6).
19.1.5. Благодаря ретроградному транспорту поддерживается обратная химическая связь между окончаниями и телом нервной клетки [5, 6]
Быстрый аксонный транспорт необходим во время развития клетки для роста аксонов и дендритов, которые удлиняются путем добавления новой мембраны на их концах. Быстрый аксонный транспорт имеется и в нейроне, закончившем рост, у которого количество мембранного материала в кончиках отростков не увеличивается. В этом случае быстрый транспорт мембран от тела клетки, называемый
антероградным, должен быть точно сбалансирован с быстрым ретроградным

293
Рис. 19-7. Использование быстрого аксонного транспорта для идентификации и определения локализации отдаленных нервных клеток, аксоны которых оканчиваются в исследуемом участке. В качестве маркера наиболее широко используется фермент пероксидаза хрена (ПХ), так как его молекулы могут быть обнаружены в очень малых количествах по окрашенным продуктам реакции, катализируемой этим ферментом.
транспортом мембран в обратном направлении - от концов клеточных отростков. Механизмы двух встречных направлений быстрого транспорта сходны, но не идентичны. Быстрый ретроградный транспорт, скорость которого в два раза меньше скорости быстрого антероградного транспорта, осуществляется с помощью иных двигательных белков (разд. 10.4.9) и используется для переноса пузырьков несколько большей величины. Структуры, возвращающиеся в тело клетки, состоят частично из стареющих цитоплазматических органелл, например митохондрий, а частично из пузырьков, образующихся при интенсивном эндоцитозе, необходимом для восстановления мембраны в окончании аксона после высвобождения нейромедиатора (см. рис. 19-20). Молекулы, находящиеся во внеклеточной среде вокруг окончания аксона, могут захватываться этими эндоцитируемыми пузырьками и вместе с ними переноситься к телу клетки. Таким образом, биосинтетический аппарат, находящийся в теле клетки, способен «узнавать» об изменениях обстановки у окончания аксона и, как мы увидим позже, соответственно реагировать на них (разд. 19.7.10).
Ретроградный транспорт позволяет тем, кто изучает анатомию нервной системы, легко прослеживать нервные связи с помощью несложной методики, показанной на рис. 19-7.
19.1.6. Нейроны окружены глиальными клетками различного типа [7]
Вся нервная ткань, как периферическая, так и центральная, состоит из клеток двух основных классов. Главная роль принадлежит нейронам, но глиальные клетки, поддерживающие нейроны, превосходят их по численности: в мозгу млекопитающих их примерно в 10 раз больше, чем нейронов. Глиальные клетки окружают нейроны (как их тела, так и отростки) и заполняют пространство между ними. Наиболее изучены шванновские клетки из периферических нервов позвоночных и олигодендроциты из центральной нервной системы позвоночных. Эти клетки обвиваются вокруг аксонов, образуя изоляционный слой в виде миелиновой оболочки (разд. 19.2.4). Три других типа глиальных клеток цетральной нервной системы - это микроглия, эпендимные клетки и астроциты (рис. 19-8). Микроглия относится к несколько обособленному классу: эти клетки функционально близки к макрофагам (разд. 17.5.1) и, подобно им, происходят из кроветворной ткани. Все остальные глиальные клетки имеют общее эмбриональное происхождение с теми нейронами, с которыми они связаны, однако в отличие от большинства нейронов глия, как правило, не способна к электрическому возбуждению. Кроме того, в то время как нейроны после дифференцировки уже не могут делиться, большая часть глиальных клеток сохраняет эту способность на протяжении всей жизни.

294
Рис. 19-8. Три основных класса глиальных клеток из центральной нервной системы позвоночных. Глиальные клетки выделены цветом. Астроциты, которые наиболее многочисленны, имеют множество радиально отходящих отростков. Некоторые из этих отростков оканчиваются на поверхности нейронов, а другие, с расширенными концами, образуют наружный поверхностный слой ЦНС, который окружает ее кровеносные сосуды и совместно с эндотелиальными клетками капилляров создает гематоэнцефалический барьер. Эпендимные клетки образуют ресничный эпителий, выстилающий центральные полости ЦНС, и отростки этих клеток, так же как и отростки астроцитов, часто оканчиваются на кровеносных сосудах. Олигодендроциты образуют вокруг аксонов ЦНС изолирующую миелиновую оболочку. Микроглиальные клетки по своим функциям и происхождению близки к макрофагам; они участвуют в реакции ткани на повреждение и инфекцию. Эти клетки обычно находятся вблизи кровеносных сосудов.
Эпендимные клетки выстилают внутренние полости головного и спинного мозга (рис. 19-8), а их эпителиальная организация напоминает нам о происхождении центральной нервной системы из эпителиальной трубки (разд. 19.7.1).
Астроциты (рис. 19-8) - самые многочисленные и разнообразные глиальные клетки, но и самые загадочные: их функция все еще в значительной части не выяснена, хотя кажется несомненным, что они играют важную роль в процессе построения нервной системы (разд. 19.7.2) и регулируют химический и ионный состав среды, окружающей нейроны, Например, одна из разновидностей астроцитов имеет отростки с расширенными концами, которые, будучи связаны соединительными комплексами вроде встречающихся в эпителиях (разд. 14.1), образуют изолирующий барьер на внешней поверхности центральной нервной системы. Другие отростки этих же астроцитов образуют сходные «концевые ножки» на кровеносных сосудах, эндотелиальные клетки которых случае капилляров и венул) соединяются здесь необычайно развитыми плотными контактами, так что создается гематоэнцефалический барьер. Этот барьер предотвращает проникновение из крови в ткань мозга водорастворимых молекул, если их не переносят специальные транс портные белки, находящиеся в плазматической мембране эндотелиальных клеток. Таким образом, нейроны оказываются в контролируемой и защищенной среде, что имеет решающее значение для молекулярного механизма передачи электрических сигналов.
Заключение
Нервные клетки, или нейроны, - это клетки с необычайно длинными отростками, передающими электрические сигналы в виде потенциалов действия - бегущих волн электрического возбуждения. Обычно от тела нервной клетки отходит несколько разветвленных дендритов и один длинный аксон. Как правило, сигналы воспринимаются дендритами и телом клетки, а затем распространяются по аксону и передаются другим клеткам в химических синапсах. Здесь электрический сигнал, приходящий в пресинаптическое окончание аксона, индуцирует секрецию нейромедиатора, который в свою очередь вызывает электрическое изменение в постсинаптической клетке.
Нейрон можно рассматривать как секреторную клетку, выделяющую свой секрет - нейромедиатор - на очень большом расстоянии от тем клетки, где синтезируются макромолекулы. Вновь синтезируемые секреторные белки и материал для построения мембраны переносятся по
295
аксону и дендритам благодаря быстрому аксонному транспорту, при котором мелкие мембранные пузырьки движутся вдоль путей, образуемых микротрубочками. Микротрубочки и другие компоненты цитоплазмы, не связанные с мембранами, перемещаются от тела клетки при помощи совершенно другого механизма медленного аксонного транспорта. Быстрый аксонный транспорт осуществляется также и в обратном, ретроградном, направлении, перенося мембранные пузырьки от окончаний аксона к телу клетки.
Нейроны окружены глиальными клетками, которые помогают различным образом регулировать химические и электрические свойства среды, окружающей нейроны.
19.2. Потенциал-зависимые ионные каналы и потенциал действия [3, 4, 8]
Как уже говорилось в гл. 6, разность потенциалов между внутренней и наружной сторонами плазматической мембраны - мембранный потенциал - зависит от распределения электрического заряда (разд. 6.4.15). Заряд переносят через мембрану нервной клетки малые неорганические ионы, главным образом Na +, К +, Cl - и Са 2 + , которые проходят через липидный бислой по специфическим ионоселективным каналам, образуемым специальными трансмембранными белками (разд. 6.4.14). При открытии и закрытии ионных каналов распределение заряда изменяется и происходит сдвиг мембранного потенциала. Таким образом, передача сигналов нервными клетками зависит от каналов с регулируемой
проницаемостью.
Наиболее важны два типа таких каналов: 1) потенциал-зависимые каналы, в особенности натриевые, - они играют ключевую роль во вспышке электрической активности, приводящей к распространению потенциалов действия по аксону; 2) лиганд-зависимые каналы, которые преобразуют внеклеточные химические сигналы в электрические,- от них зависит функционирование синапсов. Ионные каналы и их роль в передаче электрических сигналов уже были описаны в гл. 6 (разд. 6.4.14-6.4.17), и это послужит основой для дальнейшего рассмотрения передачи нервных сигналов в настоящей главе. Некоторые электрические законы, имеющие непосредственное отношение к нервным клеткам, представлены на схеме 19-1.
19.2.1. Изменение потенциала может распространяться в нервной клетке пассивно [3, 4, 8, 9]
Обычно потенциалы действия возникают у основания аксона и затем передаются по всей его длине. Для того чтобы понять механизм этой передачи, полезно вначале рассмотреть, как распространяется электрическое возбуждение по нервной клетке в отсутствие потенциалов действия. Как уже говорилось, такое пассивное распространение - явление весьма обычное, особенно в нейронах, у которых аксоны очень коротки или их нет совсем. Такие клетки часто не имеют или почти не имеют потенциал-зависимых Na+-каналов и для передачи сигнала используют только пассивное распространение, связанное с плавно изменяющимися локальными потенциалами.
В состоянии покоя мембранный потенциал аксона имеет повсюду одинаковое отрицательное значение - внутренняя среда аксона электроотрицательна по отношению к внеклеточной среде. Как мы объяснили в гл. 6 (разд. 6.4.15), разность потенциалов зависит от значительных градиентов концентраций Na+ и К+, создаваемых Na+-К+-насосом. Благодаря каналам утечки К+ мембрана в состоянии покоя проницаема

296

297
Рис. 19-9. Ток, вводимый в аксон через микроэлектрод, выходит наружу через плазматическую мембрану. Величина выходящего тока уменьшается экспоненциально с увеличением расстояния от микроэлектрода. Предполагается, что этот ток вызывает лишь подпороговую деполяризацию мембраны. На трех графиках под схемой показано, как смещение мембранного потенциала, вызванное коротким толчком тока, уменьшается с увеличением расстояния от источника возмущения. Расстояние, на котором сдвиг мембранного потенциала уменьшается в1/е раз, называют постоянной длины. Постоянная длины варьирует в пределах примерно от 0,1 мм (для очень тонких аксонов с мембраной, относительно легко пропускающей ионы) до 5 мм (для очень толстых аксонов с относительно непроницаемой мембраной). В нашем примере эта постоянная равна 1 мм.
только для калия, поэтому мембранный потенциал покоя близок к равновесному калиевому потенциалу - обычно около —70 мВ (см. схему 19-1). Электрический сигнал может принимать форму деполяризации, когда падение потенциала на мембране уменьшается, или гиперполяризации, при которой оно возрастает. Чтобы объяснить механизм пассивного распространения электрического сигнала, рассмотрим, что происходит при локальной деполяризации аксона с помощью тока, пропускаемого через введенный в аксон электрод. Если сила тока мала, деполяризация будет подпороговой: практически все Na +-каналы останутся закрытыми и потенциалов действия не возникнет. Быстро установится равновесное состояние, при котором ток, протекающий через микроэлектрод внутрь клетки, точно сбалансирован током (главным образом калиевым), вытекающим через мембрану. Часть тока будет выходить вблизи микроэлектрода, а часть, прежде чем выйти из клетки, пройдет некоторое расстояние внутри аксона в том или другом направлении. Поэтому сдвиг мембранного потенциала будет экспоненциально уменьшаться с увеличением расстояния от источника возмущения (рис. 19-9). Такого рода пассивное распространение электрического сигнала вдоль отростка нервной клетки аналогично распространению сигнала по телеграфному кабелю, лежащему на дне моря. По мере прохождения тока по осевому проводнику (цитоплазме) происходит некоторая утечка через слой изоляции (мембрану) в окружающую среду, в результате чего сигнал постепенно затухает. Поэтому электрические свойства, от которых зависит пассивное распространение сигналов, часто называют кабельными свойствами аксона.
Впрочем, аксоны как проводники намного хуже электрических кабелей, и для передачи сигналов на расстояния больше нескольких
милли-

298
Рис. 19-10. Кальмар: показано расположение гигантских аксонов, большие размеры которых дали возможность провести первые эксперименты по изучению механизма потенциала действия. (Н. Curtis, Biology, 4th ed. New York: Worth, 1983; Keynes R. D. The nerve impulse and the squid. Scientific American, December 1958.)
метров пассивного распространения уже недостаточно, особенно в тех случаях, когда сигнал слаб и непродолжителен. Это связано не только с утечкой тока, но также и с тем, что сдвиг мембранного потенциала, вызванный током, происходит не мгновенно, а требует некоторого времени. Необходимое время зависит от емкости мембраны, т.е. величины заряда, который должен накопиться по ту и другую сторону мембраны, чтобы произошло данное изменение мембранного потенциала (см. схему 19-1). Мембранная емкость обусловливает как замедление пассивной передачи сигналов вдоль аксона, так и искажение их. Например, резкий короткий стимул, приложенный в одной точке, на расстоянии нескольких миллиметров регистрируется уже как плавный, постепенно возрастающий и падающий потенциал с сильно уменьшенной амплитудой (см. рис. 19- 9). Таким образом, для верной передачи сигналов на расстояния, превышающие несколько миллиметров, в дополнение к пассивным кабельным свойствам аксону необходим активный механизм, поддерживающий силу и форму сигнала на всем его пути. Таким автоматически усиливаемым сигналом служит потенциал действия.
19.2.2. Потенциал-зависимые натриевые каналы генерируют потенциал действия; потенциал-зависимые калиевые каналы ограничивают его продолжительность [3, 4, 8,10]
Электрохимический механизм потенциалов действия был впервые установлен в 40-50-х годах нашего века. В то время еще не были разработаны методы изучения электрических явлений в небольших одиночных клетках, и поэтому эксперименты можно было проводить только на гигантской клетке, а точнее на ее части - гигантском аксоне кальмара (рис. 19-10). Последующие работы показали, что нейроны большинства животных проводят потенциалы действия таким же образом. На схеме 19-2 представлены некоторые из ключевых основополагающих экспериментов. Несмотря на значительные технические усовершенствования, сделанные с тех пор, логика первоначальных исследований продолжает служить моделью для современных работ. Решающим моментом стало понимание того, что проницаемость мембраны для Na+ и К+ изменяется при изменении мембранного потенциала; иными словами, в мембране имеются натриевые и калиевые каналы, зависимые от потенциала. Метод фиксации потенциала (рис. 19-11) дал возможность подробно изучить закономерности открытия и закрытия этих каналов при изменении мембранного потенциала и показал, что потенциал действия -прямое следствие этих закономерностей.
Потенциал действия возникает, когда мембрана мгновенно деполяризуется до уровня, превышающего определенный порог. Как уже говорилось в гл. 6, в результате такой деполяризации какого-то участка мембраны здесь откроются потенциал-зависимые натриевые каналы, что вызовет ток ионов Na+ вниз по их электрохимическому градиенту; следствием будет дальнейшая деполяризация мембраны, в результате чего откроется еще большее число Na+-каналов, и так далее, подобно цепной реакции, до тех пор, пока потенциал в этом участке мембраны не приблизится к натриевому равновесному потенциалу (см. схему 19-1). На этом этапе происходят два события, которые возвращают потенциал мембраны к первоначальному отрицательному значению: Na +-каналы спонтанно переходят в закрытое, инактивированное состояние, а потенциалзависимые К +-каналы открываются. Эти калиевые каналы реагируют на изменение мембранного потенциала почти так же, как и натриевые, но менее быстро, и поэтому их иногда называют медленными К +-каналами. Как только К+-каналы открываются, выходящий калие-

299
1. Потенциалы действия регистрируются с помощью |
|
|
|
|
|
внутриклеточного электрода |
|
|
|
|
|
Гигантский аксон кальмара достигает примерно 0,5 — 1 мм в диаметре |
|
|
|
|
|
и нескольких сантиметров в длину (рис. 19-10) . Электрод в виде стеклянного |
|
|
|
|
|
капилляра, заполненного проводящим раствором, может быть введен глубоко в |
|
|
|
|
|
цитоплазму по направлению оси клетки. С помощью такого электрода можно |
|
|
|
|
|
измерить разность потенциалов между цитоплазмой и наружной поверхностью |
|
|
|
|
|
клетки — мембранный потенциал — во время прохождения импульса. Импульс |
|
|
|
|
|
можно вызвать коротким электрическим раздражением одного из концов аксона. |
|
|
|
|
|
В каком конце аксона это происходит, не важно, поскольку возбуждение может |
|
|
|
|
|
распространяться в любом направлении; сила стимуляции, если она превысит |
|
|
|
|
|
определенный порог, тоже не имеет значения: потенциал действия подчиняется |
|
|
|
|
|
закону "все или ничего". |
|
|
|
|
|
2. Потенциалы действия зависят только от свойств плазматической |
наполнить его чистым раствором Na+, К+ и CI или SO2 4- |
||||
мембраны нейрона и трансмембранных градиентов концентрации Na+ и K+. |
. Интересно то, что если концентрации Na+ и К+ внутри |
||||
Как внутри, так и снаружи аксона наиболее многочисленны |
и снаружи близки к естественным (и только в этом |
||||
ионы Na+, K+ и Cl-. Как и в других клетках, Na+К+ - насос поддерживает |
случае), аксон будет проводить потенциалы действия |
||||
концентрационный градиент: концентрация ионов натрия внутри клетки |
нормальной |
формы, |
изображенной |
выше. |
|
примерно в 9 раз меньше, чем снаружи, тогда как внутри - клеточная |
Следовательно, существенную роль в передаче |
||||
концентрация К+ почти в 20 раз выше по сравнению с внеклеточной |
электрических сигналов клеткой должна играть |
||||
средой. Какие ионы важны для потенциала действия? Размеры |
мембрана. Наиболее важны ионы натрия и калия; |
||||
гигантского аксона кальмара настолько велики, что можно выдавить из |
трансмембранные градиенты их концентраций должны |
||||
него цитоплазму, словно зубную пасту из тюбика, а затем |
обеспечить энергию, необходимую для проведения |
||||
|
|
потенциалов действия, так как все другие источники |
|||
|
|
метаболической энергии, по-видимому, удаляются в |
|||
|
|
процессе перфузии. |
|
|
|
|
|
|
|
|
|
3. В состоянии покоя мембрана проницаема в основном для К+; в |
После пика потенциала действия мембранный |
|||
момент прохождения потенциала действия она на короткое время |
потенциал возвращается к отрицательной величине, |
|||
становится проницаемой для Na+ . |
которая зависит от внеклеточной концентрации К и |
|||
В состоянии покоя мембранный потенциал близок к |
даже ближе к равновесному калиевому потенциалу, |
|||
равновесному калиевому потенциалу. При изменении внеклеточной |
чем потенциал покоя: мембрана утрачивает |
|||
концентрации К потенциал покоя изменяется приблизительно в |
проницаемость для натрия, тогда как проницаемость |
|||
соответствии с уравнением Нернста для К+ (см. схему 19-1 и разд. |
для калия возрастает, т.е. натриевые каналы |
|||
6.4.15). Следовательно, в состоянии покоя мембрана проницаема |
закрываются, |
а |
дополнительные |
калиевые |
главным образом для К+: основными путями для прохождения этих ионов |
открываются. |
|
|
|
через мембрану служат каналы утечки калия.
Изменение внеклеточной концентрации Na+ не влияет на потенциал локоя. Однако высота пика потенциала действия изменяется приблизительно в соответствии с уравнением Нернста для Na+. Значит, во время потенциала действия мембрана, по-видимому, проницаема преимущественно для ионов Na+: открываются натриевые каналы.
4. Метод фиксации напряжения дает возможность наблюдать, как |
происходит при первой деполяризации. Для выхода |
|||||
мембранный потенциал контролирует открытие и закрытие ионных |
из такого состояния требуется относительно много |
|||||
|
|
|
|
|
каналов. |
времени — примерно 10 мс, пока мембрана |
Можно поддерживать мембранный потенциал на постоянном уровне по |
реполяризуется (потенциал возвращается к уровню |
|||||
всей длине аксона, пропуская ток надлежащей величины через |
покоя) . |
|||||
металлическую проволочку, введенную по оси аксона, и одновременно |
В нормальных условиях переход ионов |
|||||
регистрируя |
мембранный |
потенциал |
с |
помощью |
другого |
натрия внутрь через открытые натриевые каналы |
внутриклеточного электрода (см. рис. 19-11) . Если мембранный |
вызывает "пик" потенциала действия, а затем |
|||||
потенциал внезапно отклонить от уровня покоя и вызвать |
инактивация натриевых каналов и открытие |
|||||
продолжительную деполяризацию мембраны (А), то натриевые каналы |
калиевых каналов возвращают мембрану в |
|||||
начинают быстро открываться, |
и это продолжается до тех |
пор, пока |
состояние покоя. |
проницаемость мембраны для ионов натрия не превысит проницаемость ее для калия; затем натриевые каналы спонтанно закрываются даже при неизменном мембранном потенциале. Калиевые каналы тоже открываются, но с некоторой задержкой, так что проницаемость мембраны для калия возрастает в то время, когда проницаемость для натрия уже снижается (Б) теперь эксперимент очень быстро повторить, возвратив на короткое мембранный потенциал к уровню покоя и вновь деполяризовав мембрану, то реакция мембраны будет иной: в результате продолжительной деполяризации натриевые каналы
инактивируются, поэтому вторичная деполяризация уже не изменяет проводимость мембраны, как это
Схема 19-2. Некоторые классические эксперименты на гигантском аксоне кальмара.

300
Рис. 19-11. Метод фиксации напряжения, с помощью которого изучают поведение ионных каналов, измеряя ток, протекающий через плазматическую мембрану, когда мембранный потенциал поддерживается на каком-либо постоянном уровне. Используются два внутриклеточных электрода - один для контроля мембранного потенциала, а другой для введения в клетку тока определенной величины. Ток, входящий в клетку через электрод, вытекает наружу через ионные каналы в плазматической мембране; на рисунке эта цепь выделена цветом. До тех пор пока мембранный потенциал имеет постоянную величину, ток 1, входящий в аксон через электрод, полностью уравновешивается суммарным током, вытекающим из клетки через всю поверхность аксона (в противном случае общий заряд внутри клетки изменился бы, что привело бы к сдвигу мембранного потенциала). Мембранный потенциал можно изменять, уменьшая или увеличивая ток, вытекающий наружу. Электронное устройство, фиксирующее напряжение, следит за мембранным потенциалом V и регулирует величину тока I таким образом, чтобы поддерживать V на постоянном уровне: любое небольшое отклонение от заданного значения Vc автоматически приводит к изменению величины тока, благодаря чему мембранный потенциал не отклоняется от фиксированного значения V= Vc. Для того чтобы выяснить, как изменяется поведение мембранных каналов с течением времени, нужно резко переключить потенциал с одного фиксированного уровня на другой и проследить за соответствующими токами с помощью осциллоскопа. Измеряя величину тока при разных концентрациях Na+ и К+ в среде, можно вычислить, какая часть трансмембранного тока переносится теми и другими ионами, и определить вклад в этот ток N +-селективных и К+- селективных каналов. Метод фиксации напряжения может быть приспособлен для анализа поведения отдельных молекул, образующих ионные каналы, которые находятся в маленьких участках мембраны, закрывающих отверстие микроэлектрода; в этом случае методику называют методом «пэтч-клампа».
вый ток быстро перекрывает по величине входящий натриевый ток и мембранный потенциал возвращается к уровню равновесного К+-потенциала еще до полной инактивации Na +-каналов. В результате реполяризации потенциал-зависимые калиевые каналы вновь закрываются, а инактивированные натриевые каналы переходят в первоначальное закрытое, но способное к активации состояние. Таким образом способность генерировать потенциалы действия может восстановиться в данном участке мембраны менее чем на одну тысячную секунды.
Последующие эксперименты показали, что не во всех нейронах продолжительность потенциала действия определяется потенциалзависимыми К+-каналами. В частности, в миелинизированных аксонах млекопитающих (разд. 19.2.4) число таких каналов очень невелико и состояние покоя достигается просто в результате инактивации натриевых каналов. Но хотя наличие потенциал-зависимых калиевых каналов несущественно для проведения уже возникших потенциалов действия, позднее мы увидим (разд. 19.4.3), что эти каналы играют решающую роль в механизме первичного генерирования импульсов при раздражении тела нервной клетки.
19.2.3. Потенциалы действия обеспечивают быструю передачу сигналов на дальние расстояния [3, 4, 8, 11]
Благодаря кабельным свойствам аксона локальный приток большого количества ионов Na+ во время потенциала действия приводит к возникновению продольных токов, деполяризующих смежные участи мембраны до порогового уровня, что в свою очередь вызывает и здесь возникновение потенциалов действия (рис. 19-12). Этот процесс распространяется вдоль аксона от одного возбужденного участка к другому со скоростью, которая у позвоночных может составлять от 1 до 100 м/с в зависимости от типа аксона.
Скорость проведения импульса зависит от кабельных свойств аксона: чем больше емкость мембраны, тем больший заряд нужен для деполяризации ее до порогового уровня, а чем больше внутреннее сопротивление цитоплазмы в аксоне, тем меньший ток может проходить через нее и тем больше времени требуется для накопления необходимого заряда Сопротивление и емкость единицы длины аксона определяются площадью поперечного сечения аксона, и простое вычисление показывает, что с увеличением диаметра (толщины) аксона скорость проведения импульсов возрастает. У кальмара и многих других беспозвоночных для быстрой передачи сигналов в ходе эволюции выработались аксоны. огромного диаметра. Однако у позвоночных столь же высокая скорость проведения сигналов достигается гораздо более экономным способом - путем изоляции поверхности многих аксонов миелиновой оболочкой,