
Molekuljarnaja Biologija Kletki v3
.pdf
181
Рис. 17-29. Срез участка костного мозга (электронная микрофотография при небольшом увеличении). Эта ткань - главный источник новых клеток крови (кроме Т-лимфоцитов). Обратите внимание на то, что незрелые клетки крови определенного типа имеют тенденцию собираться «семейными группами». (J.A.G. Rhodin, Histology: A Text and Atlas. New York: Oxford Univ. Press, 1974.)
по которым их можно было бы распознать. Чтобы идентифицировать и охарактеризовать стволовые клетки, нужен функциональный тест, позволяющий прослеживать судьбу потомства отдельных клеток. Как мы увидим, с этой целью можно просто изучать колонии, образуемые отдельными клетками в культуре. В случае кроветворной системы, однако, такие клеточные клоны можно распознавать и в интактном животном.
Если животное подвергнуть рентгеновскому облучению в большой дозе, кроветворные клетки у него будут разрушены, и через несколько дней оно погибнет из-за неспособности организма восполнять утрату клеток крови. Облученное животное можно, однако, спасти путем инъекции клеток, взятых из костного мозга здорового иммунологически совместимого донора. Среди этих клеток, очевидно, есть такие, которые смогут образовать колонии в организме облученного реципиента и таким образом снабдить его кроветворной тканью. Такие колонии развиваются, в частности, в селезенке; она служит у нормальных мышей важным дополнительным очагом кроветворения. Если исследовать селезенку облученной мыши через неделю или две после введения клеток от здорового донора, в ней можно увидеть обособленные узелки, каждый из которых содержит колонию миелоидных клеток (рис. 17-31);
Рис. 17-30. А. Мегакариоцит среди других клеток в костном мозге (схема). Огромные размеры мегакариоцита связаны с тем, что он имеет высокополиплоидное ядро. Один мегакариоцит образует около 10000 тромбоцитов, отщепляющихся от длинных отростков, которые проходят через отверстия в стенках соседних кровеносных синусов. Б. Внутренность такого синуса в костном мозге (микрофотография, полученная с помощью сканирующего электронного микроскопа). Видны отростки мегакариоцитов. (Б - из R. G. Kessel, R.H. Kardon, Tissues and Organs: A Text-Atlas of Scanning Electron Microscopy. San Francisco: Freeman, 1979.)

182
Каждый узелок содержит клон кроветворных клеток, происходящих от одной из инъецированных клеток костного мозга
Рис. 17-31. Схема опыта, в котором селезенку сильно облученного животного заселяют кроветворными клетками костного мозга, взятыми от здорового донора. Такой эксперимент впервые позволил анализировать индивидуальные миелоидные клеткипредшественники, что необычайно расширило возможности изучения гемопоэза.
через две недели в некоторых колониях может быть больше миллиона клеток. Раздельность узелков позволяет предполагать, что каждый из них, подобно колонии бактерий на культуральной чашке, образован клоном, происходящим от одной исходной клетки, и это подтверждают эксперименты с использованием генетических маркеров.
Клетку - родоначальницу такой колонии называют колониеобразующей единицей (КОЕ). Колониеобразующие клетки гетерогенны. Одни дают начало только одному типу миелоидных клеток, а другие - нескольким типам. Некоторые клетки проходят много циклов деления и образуют большие колонии, тогда как другие меньше делятся и образуют маленькие колонии. Большинство колоний гибнет, произведя какое-то ограниченное количество терминально дифференцированных кровяных клеток. Однако встречаются также колонии, способные к интенсивному самообновлению, и они производят наряду с терминально дифференцированными клетками крови новые колониеобразующие клетки. Как полагают, родоначальницами таких самообновляющихся колоний являются стволовые кроветворные клетки из пересаженного костного мозга.
17.5.4. Плюрипотентная стволовая клетка дает начало всем классам клеток крови [27]
Зачастую в одной селезеночной колонии, образовавшейся из одной стволовой клетки, можно найти миелоидные клетки всех типов. Таким образом, кроветворная стволовая клетка плюрипотентна: она может давать начало многим различающимся типам клеток. Хотя селезеночные колонии, по-видимому, не содержат лимфоцитов, другие эксперименты показывают, что и лимфоциты происходят от той же самой стволовой клетки, которая порождает все миелоидные клетки. Это эксперименты с генетическими маркерами, с помощью которых можно идентифицировать клетки одного клона даже после их выхода в кровяное русло. Было использовано несколько клональных маркеров, но лучшими оказались специально сконструированные ретровирусы. Маркерный вирус, как и все ретровирусы, может включить свой геном в хромосому инфицируемой клетки, но у него удалены гены, необходимые для образования инфекционных вирусных частиц. Поэтому маркер присутствует только в колонии клеток, которые были первоначально инфицированы. Потомство одной из таких клеток отличается от потомства другой только тем, что у них различны хромосомные сайты интеграции вируса. Для анализа потомства кроветворных клеток сначала инфицируют клетки костного мозга ретровирусом (разд. 5.5.8) in vitro, а затем вводят их летально облученным реципиентам; после этого можно использовать ДНК-зонды, чтобы прослеживать потомство отдельных инфицированных клеток в различных кроветворных и лимфоидных тканях.
Эти опыты не только подтверждают, что все классы клеток крови - и миелоидных, и лимфоидных - происходят от общей стволовой клетки (рис. 17-32), но и позволяют прослеживать «родословные» этих клеток крови в течение долгого времени. Через 1-2 месяца после пересадки костного мозга большинство клеток крови облученной мыши-реципиента - это потомки не более чем полудюжины плюрипотентных стволовых клеток; так же обстоит дело и спустя несколько недель, но тогда уже клетки крови - это потомство другой группы стволовых клеток. Эти наблюдения заставляют думать, что отдельная стволовая клетка в данный отрезок времени только с очень низкой вероятностью может начать образование клона дифференцированного потомства и что между начальным этапом и конечной дифференцировкой происходит мно-

183
Рис. 17-32. Предполагаемая схема кроветворения. В норме плюрипотентная стволовая клетка изредка делится, образуя или такие же плюрипотентные стволовые клетки (самообновление), или коммитированные клетки-предшественники (КОЕ - колониеобразующие клетки), которые необратимо детерминированы на образование только ограниченного числа типов кровяных клеток. Пролиферацию клетокпредшественников стимулируют специфические факторы роста, но постепенно эти клетки утрачивают способность делиться и превращаются в терминально дифференцированные клетки крови, которые обычно живут лишь несколько дней или недель. У взрослых млекопитающих все показанные здесь клетки развиваются главным образом в костном мозге. Исключение составляют Т-лимфоциты, развивающиеся в тимусе, и макрофаги, образующиеся в большинстве тканей из моноцитов. Наиболее спорной в этой схеме является точка первого разветвления: не выяснено, существуют ли стволовые клетки, способные превращаться только в Т- и В-лимфоциты, и стволовые клетки, дающие начало клеткам всех других типов (миелоидным). Вполне возможно, что первичные плюрипотентные стволовые клетки могут превращаться также в различные тканевые клетки, не показанные на этой схеме, такие как клетки NC (киллеры), тучные клетки, остеокласты и разнообразные клетки, представляющие антитены (разд. 18.6.10), но пути этих превращений точно не установлены.
жество клеточных делений, так что в конце концов клон потомства будет очень большим - до нескольких миллионов клеток. Несмотря на относительную редкость и «квантовый» характер начальных событий, дифференцированные клетки образуются в целом непрерывно и с постоянной скоростью; это связано с работой регуляторных механизмов, кото-
184
рые действуют на промежуточных этапах дифференцировки и помогают регулировать конечную численность клеток каждого типа.
17.5.5. Число различных клеток крови увеличивается в результате деления коммитированных клетокпредшественниц [23, 28]
Если клетка уже дифференцировалась как эритроцит, гранулоцит и т. д., обратный путь для нее закрыт: состояние дифференцировки необратимо. Поэтому на какой-то стадии своего развития потомство плюрипотентной стволовой клетки должно окончательно и бесповоротно вступить на какой-то определенный путь дифференцировки. Из простого исследования костного мозга под микроскопом ясно, что это происходит задолго до последнего цикла деления, приводящего к формированию зрелых дифференцированных клеток: можно распознать специализированные клетки-предшественницы, которые еще делятся, но уже проявляют признаки начавшейся дифференцировки. Таким образом, после вступления клетки на определенный путь следует серия делений, увеличивающих число клеток данного специализированного типа.
Из сказанного видно, что кроветворную систему можно рассматривать как иерархию клеток. Плюрипотентные стволовые клетки дают начало коммитированным клеткам-предшественницам, которые уже необратимо определились как предки кровяных клеток одного или нескольких типов. Полагают, что коммитированные клетки делятся быстро, но ограниченное число раз. В конце такой серии делений они становятся терминально дифференцированными клетками, которые обычно больше не делятся и погибают через несколько дней или недель. Исследования in vitro дают возможность узнать, как регулируются эти клеточные процессы.
17.5.6. Факторы, регулирующие гемопоэз, можно исследовать на культурах клеток [29]
Кроветворные клетки будут выживать, размножаться и дифференцироваться в культуре только в том случае, если снабдить их специфическими факторами роста или выращивать вместе с клетками, вырабатывающими эти факторы. Длительная пролиферация плюрипотентных стволовых клеток возможна, например, при росте их в диспергированном состоянии поверх слоя клеток костномозговой стромы, предположительно имитирующего среду в неповрежденном костном мозге; в таких культурах могут образовываться миелоидные клетки всех типов. Диспергированные кроветворные клетки костного мозга можно также выращивать в полутвердой среде из агара или метилцеллюлозы с добавлением факторов, выделенных из других клеток. В такой полутвердой среде потомство каждой отдельной клетки остается на месте, образуя легко распознаваемую колонию. Отдельная коммитированная клетка, например предшественник нейтрофилов, может дать начало клону из тысяч нейтрофилов. Такая система культуры позволяет испытывать активность факторов, поддерживающих гемопоэз, и таким образом выделять их и изучать их действие. Эти вещества оказались гликопротеинами; их обычно называют колониестимулирующими факторами, или КСФ. Из все возрастающего числа КСФ, которые были идентифицированы и подвергнуты очистке, одни циркулируют в крови и действуют как гормоны, в то время как другие играют роль локальных химических медиаторов (разд. 12.1). Из КСФ гормонального типа лучше всего изучен гликопротеин эритропоэтин, который вырабатывается в почках и регулирует эритропоэз (образование эритроцитов).

185
Рис. 17-33. Схема развития эритробласта (предшественника эритроцита). Эритробласт выталкивает ядро и становится незрелым эритроцитом (ретикулоцитом) незадолго до выхода клетки из костного мозга в кровоток. Спустя 1-2 дня ретикулоцит потеряет свои митохондрии и рибосомы и станет зрелым эритроцитом. Клоны эритроцитов развиваются в костном мозге на поверхности макрофага, который фагоцитирует и переваривает ядра, выбрасываемые эритробластами.
17.5.7 Эритропоэз зависит от гормона эритропоэтина [30]
Эритроциты составляют основную массу клеток, циркулирующих в крови (см. табл. 17-1). Зрелый эритроцит плотно заполнен гемоглобином и практически не содержит никаких обычных клеточных органелл. В эритроците взрослого млекопитающего отсутствуют даже ядро, эндоплазматический ретикулум, митохондрии и рибосомы - они выталкиваются из клетки в процессе развития (рис. 17-33). Поэтому эритроцит не может расти или делиться; единственный возможный источник образования новых эритроцитов - стволовые клетки. При этом продолжительность жизни эритроцитов невелика - около 120 дней у человека и 55 дней у мыши. Изношенные эритроциты поглощаются и перевариваются макрофагами в печени и селезенке.
Недостаток кислорода или нехватка эритроцитов побуждает клетки почек синтезировать и выделять в кровь повышенное количество эритропоэтина, а эритропоэтин в свою очередь стимулирует образование эритроцитов. Поскольку усиленный выброс новых эритроцитов в кровоток отмечается уже через один или два дня после повышения концентрации эритропоэтина в крови, гормон должен действовать на клетки, являющиеся очень близкими предшественниками зрелых эритроцитов.
Клетки, реагирующие на эритропоэтин, можно идентифицировать, добавляя эритропоэтин в культуры клеток костного мозга на полутвердой среде. Через несколько дней появляются колонии примерно из 60 эритроцитов, каждая из которых происходит от одной коммитированной эритроидной клетки-предшественницы. Такую клетку называют колониеобразующей единицей эритроидного ряда, или КОЕ-Э, и она дает начало зрелым эритроцитам приблизительно после шести или даже меньшего числа циклов деления. КОЕ-Э еще не содержат гемоглобина; Рис. 17-34. Родословная, показывающая отношения между плюрипотентной стволовой клеткой, ВОЕ-Э, КОЕ-Э и зрелыми эритроцитами. Клетки ВОЕ-Э и КОЕ-Э являются коммитированными клетками-предшественниками эритроидного ряда. Клетки ВОЕ-Э реагируют на интерлейкин 3, но не реагируют на эритропоэтин, а клетки КОЕ-Э хорошо отвечают на эритропоэтин. Серия клеточных делений, происходящих под влиянием эритропоэтина, - это эффективный способ регулирования эритропоэза без нарушения образования других клеток крови.
186
они образуются из клеток-предшественниц более раннего типа, пролиферация которых не зависит от эритропоэтина.
Второй колониестимулирующий фактор - интерлейкин 3 (ИЛ-3)-ответствен за выживание и пролиферацию плюрипотентных стволовых клеток и большинства типов их коммитированных потомков. В его присутствии из культивируемых клеток костного мозга развиваются гораздо более крупные эритроидные колонии примерно из 5000 эритроцитов каждая. Эти колонии возникают из эритроидных клеток, называемых взрывообразующими единицами эритроидного ряда (ВОЕ-Э). ВОЕ-Э отличается от плюрипотентной стволовой клетки тем, что имеет ограниченную способность к пролиферации и дает начало колониям, содержащим только эритроциты, даже при таких условиях культивирования, при которых другие клетки могут порождать и иные виды дифференцированных клеток крови. Отличие от КОЕ-Э состоит в том, что ВОЕ-Э нечувствительны к эритропоэтину и от зрелых эритроцитов их отделяют целых 12 клеточных делений, для которых уже необходим эритропоэтин. (Эти клетки отличаются от КОЕ-Э еще и по размерам, и их можно отделить от последних центрифугированием.) Таким образом, ВОЕ-Э считают клетками-предшественницами, коммитированными для дифференцировки в эритроциты, и ранними предками КОЕ-Э (рис. 17-34).
17.5.8. На образование нейтрофилов и макрофагов влияет несколько колониестимулирующих факторов (КСФ) [29,
31]
Два типа «профессиональных фагоцитов» - нейтрофилы и макрофагиразвиваются из одних и тех же клеток, называемых предшественниками гранулоцитов и макрофагов (ГМ). Подобно другим гранулоцитам (эозинофилам и базофилам), нейтрофилы лишь несколько часов циркулируют в крови, а затем переходят из капилляров в соединительные ткани или другие специфические места, где они живут несколько дней, а потом гибнут. В отличие от этого макрофаги могут месяцами, а возможно, и годами находиться вне кровяного русла, где способны возобновлять пролиферацию под воздействием местных сигналов.
Было выявлено четыре различных КСФ, стимулирующих в культуре формирование колоний нейтрофилов и макрофагов. Полагают, что in vivo они действуют в различных сочетаниях, регулируя избирательное образование определенных клеток. Эти КСФ синтезируются клетками разного типа, в том числе эндотелиальными клетками, фибробластами, макрофагами и лимфоцитами; при бактериальной инфекции в какой-либо ткани их концентрация в крови быстро повышается, что ведет к ускоренному переходу фагоцитирующих клеток из костного мозга в кровоток. Из этих четырех факторов наименее специфичен ИЛ-3: он действует на плюрипотентные стволовые клетки и на большинство коммитированных клеток, включая предшественников ГМ. Три других фактора воздействуют более избирательно на коммитированных предшественников ГМ и их дифференцированное потомство (табл. 17-2), хотя в высокой концентрации некоторые из них влияют и на другие линии.
Так же как и эритропоэтин, все эти КСФ являются гликопротеинами, действующими в низких концентрациях (10-12 М) путем связывания со специальными рецепторами клеточной поверхности. Их воздействие на клетки-предшественники заключается не только в запуске механизма образования дифференцированных колоний, но и в активации специализированных функций (таких, как фагоцитоз и убивание клеток-мишеней) у клеток с законченной дифференцировкой. Белки, синтезированные

187
Таблица 17-2. Некоторые колониестимулирующие факторы (КСФ), влияющие на образование клеток крови
Фактор |
Мол. масса |
Клетки-мишени |
Места образования |
|
|
|
|
|
|
Эритропоэтин |
51000 |
КОЕ-Э |
Клетки почек |
|
|
|
|
||
Интерлейкин |
25000 |
Плюрипотентные стволовые клетки, большинство Т-лимфоциты, эпидермальные клетки |
||
|
|
клеток-предшественников, многие терминально |
|
|
|
|
дифференцированные клетки |
|
|
|
|
|
|
|
ГМ-КСФ 1 |
23000 |
ГМ -предшественники 4 |
Т-лимфоциты, эндотелиальные клетки, |
|
|
|
|
фибробласты |
|
|
|
|
|
|
Г-КСФ 2 |
25000 |
ГМ-предшественники 4 и нейтрофилы |
Макрофаги, фибробласты |
|
|
|
|
|
|
М-КСФ 3 |
70000 (димер) |
ГМ-предшественники 4 и макрофаги |
Фибробласты, |
макрофаги, |
|
|
|
эндотелиальные клетки |
|
1КСФ для гранулоцитов и макрофагов (GM-CSF).
2КСФ для гранулоцитов (G-CSF).
3КСФ для макрофагов (M-CSF).
4Предшественники гранулоцитов и макрофагов.
спомощью клонированных генов для этих факторов, служат мощными стимуляторами кроветворения у экспериментальных животных, что позволяет думать об их применении в клинике для стимуляции восстановления кроветворной ткани и при лечении инфекций.
Описаны также факторы, которые специфически стимулируют развитие других видов миелоидных клеток, таких как мегакариоциты, базофилы и эозинофилы, но они не так хорошо охарактеризованы, как обсуждавшиеся выше КСФ. Есть данные о том, что наряду с растворимыми КСФ, среди которых есть локально секретируемые продукты клеток костномозговой стромы, в регуляции кроветворения участвуют также сигнальные молекулы, связанные с клетками и с межклеточным матриксом.
17.5.9.Поведение кроветворной клетки частично зависит от случая [29, 32]
КСФ определяют как факторы, способствующие образованию колоний дифференцированных клеток крови. Трудно точно установить, какое влияние оказывает КСФ на отдельную кроветворную клетку. Этот фактор мог бы повышать вероятность выживания клетки; мог бы регулировать скорость клеточного деления или число делений, необходимых клетке-предшественнице перед дифференцировкой. Он мог бы действовать на поздних этапах дифференцировки и облегчать ее; и мог бы, напротив, действовать на ранних этапах и влиять на коммитирование (рис. 17-35). Прослеживая судьбу отдельных изолированных кроветворных клеток в культуре, можно установить, как определенный КСФ, например ГМ-КСФ, может давать все эти различные эффекты. Тем не менее до сих пор не ясно, какие эффекты существенны in vivo. Особенно непонятным остается поведение плюрипотентных стволовых клеток: эти важнейшие клетки разбросаны и малочисленны - меньше одной на тысячу клеток костного мозга, - и их очень трудно идентифицировать с полной уверенностью.

188
Рис. 17-35. Параметры, с помощью которых могло бы регулироваться образование клеток крови определенного типа. Исследования in vitro показывают, что колониестимулирующие факторы (КСФ) могут влиять на все эти аспекты кроветворения.
Кроме того, исследования in vitro показывают, что существует большой элемент случайности в выборе пути кроветворной клеткой. КСФ не диктуют прямо, что клетка должна делать, а изменяют вероятность того или иного поведения. В культурах кроветворных клеток, даже если эти клетки были подвергнуты отбору на максимальную гомогенность популяции, они сильно различаются по размерам, а часто и по характеру образующихся из них колоний. И если взять две сестринские клетки сразу после деления и культивировать по отдельности в идентичных условиях, они будут часто давать колонии, содержащие клетки разного типа или же клетки тех же типов, но в разных количествах. Таким образом, и программирование клеточных делений, и выведение клеток на определенный путь дифференцировки (коммитирование), видимо, включают случайные события на уровне индивидуальной клетки, даже если поведение многоклеточной системы в целом надежно регулируется. Вопрос о молекулярных механизмах, лежащих в основе этих процессов, - самая фундаментальная из нерешенных проблем кроветворения.
Заключение
Все многочисленные типы кровяных клеток ведут свое происхождение от общей плюрипотентной стволовой клетки. Во взрослом организме стволовые клетки находятся главным образом в костном мозге, где они в норме довольно редко делятся, производя новые стволовые клетки (самообновление) или различные коммитированные клетки-предшественницы, каждая из которых способна давать начало клеткам одного или нескольких типов. Коммитированные клетки усиленно делятся под воздействием сигнальных гликопротеиновых молекул (называемых колониестимулирующими факторами, КСФ) и затем дифференцируются в зрелые клетки крови, которые обычно живут лишь несколько дней или

189
недель. Изучению кроветворения существенно помогают опыты на культурах in vitro, где стволовые клетки или коммитированные клеткипредшественницы при росте в полутвердой среде образуют клональные колонии. Однако плюрипотентные стволовые клетки малочисленны, их трудно распознавать и пока еще не ясно, как они выбирают свой путь среди разных вариантов развития.
17.6. Происхождение, видоизменение и регенерация ткани скелетных мышц [33]
«Мышечными» называют все типы клеток, функция которых состоит в сокращении, хотя в остальном эти клетки могут быть мало сходны между собой. Как уже говорилось в гл. 11, сократительный аппарат, включающий актин и миозин, - это фундаментальная особенность животных клеток вообще, но в мышечных клетках он особенно сильно развит. У млекопитающих имеются четыре главных типа клеток, специально приспособленных для сокращения: волокна скелетных мышц, клетки сердечной мышцы, гладкомышечные и миоэпителиальные клетки (рис. 17-36). Они различаются по функции, структуре и пути развития.
Рис. 17-36. Четыре типа мышечных клеток млекопитающих. А. Схематические изображения (с соблюдением масштаба). Б- Д. Фотографии, полученные с помощью сканирующего электронного микроскопа: Б - скелетная мышца шеи хомячка; В - сердечная мышца крысы; Г— гладкая мышца из мочевого пузыря морской свинки; Д- миоэпителиальные клетки в альвеоле лактирующей молочной железы крысы. Стрелками на фото В указаны вставочные диски (см. разд. 11.1.14). Обратите внимание, что гладкая мышца показана при меньшем увеличении, чем другие. [Б - с
любезного разрешения Junzo Desaki; С-Т. Fujiwara, Cardiac Muscle, in: Handbook of Microscopic Anatomy (E. D. Canal, ed.). Berlin: Springer Verlag, 1986; Г с любезного разрешения Satoshi Nakasiro; Е-Т. Nagatо et al., Cell and Tissue Res., 209, 1-10, 1980.]
190
Хотя все они, по-видимому, используют для создания механической силы актин и миозин, в клетках разного типа эти белки несколько различаются по своей первичной структуре, по-разному организованы во внутреннем пространстве клетки и ассоциированы с разными наборами белков, регулирующих сокращение.
Клетки скелетных мышц, сократительный аппарат которых детально рассмотрен в гл. И, ответственны практически за все произвольные движения. Эти клетки могут иметь огромные размеры (до полуметра в длину и до 100 мкм в диаметре у взрослого человека) и за свою форму получили также название мышечных волокон. Каждая такая клетка представляет собой синцитий, содержащий много ядер в общей цитоплазме. В отличие от этого мышечные клетки трех других типов имеют более обычное строение - в них только по одному ядру. Клетки сердечной мышцы сходны с волокнами скелетной мускулатуры в том отношении, что нити актина и миозина в них образуют упорядоченные системы, придающие клетке исчерченный вид. Гладкомышечные клетки получили свое название потому, что они, напротив, не выглядят исчерченными. Функции у гладкой мускулатуры весьма разнообразны - от проталкивания пищи по пищеварительному тракту до поднятия шерсти дыбом при холоде или страхе. Миоэпителиальные клетки (тоже лишенные исчерченности) в отличие от клеток трех других типов лежат в эпителии и происходят из эктодермы. Эти клетки образуют мускулатуру радужной оболочки глаза, расширяющую зрачок, а также используются для выдавливания слюны, пота и молока из соответствующих желез (см. рис. 17-36, Д).
Четыре главных типа мышечных клеток можно далее подразделить на разные подтипы, каждый из которых имеет свои особенности. Но мы сосредоточим свое внимание на клетках скелетных мышц с их интересным механизмом развития, необычным способом репарации повреждений и поразительной способностью видоизменяться в дифференцированном состоянии.
17.6.1. Новые клетки скелетных мышц образуются путем слияния миобластов [2, 34]
В предыдущей главе было описано, каким образом определенные клетки, происходящие из сомитов на очень ранней стадии развития позвоночного, детерминируются как миобласты (т.е. предшественники клеток скелетных мышц) и мигрируют в соседнюю эмбриональную соединительную ткань - мезенхиму (разд. 16.6.5). Как говорилось в разд. 10.1.8, это определение судьбы клетки как миобласта (а не фибробласта, например), по-видимому, связано с активацией специфического гена, управляющего развитием. После некоторого периода пролиферации миобласты сливаются друг с другом, образуя многоядерные клетки скелетных мышц (рис. 17-37). При слиянии они претерпевают резкое изменение фенотипа в результате координированной активации целой батареи других генов (разд. 10.1.8). После объединения миобластов в синцитий ДНК в ядрах никогда уже больше не реплицируется. Слияние обусловлено специфическим взаимным узнаванием между миобластами: они не сливаются с соседними немышечными клетками. Молекулярная основа процесса узнавания не известна.
Миобласты, размножавшиеся в культуре целых два года, все еще сохраняют способность к дифференцировке, и при надлежащем изменении культуральных условий они будут сливаться, образуя мышечные клетки. По-видимому, ключевым компонентом среды, поддерживающим пролиферацию и препятствующим дифференцировке, служит фактор роста фибробластов (ФРФ): если его удалить, клетки быстро