
- •Министерство науки и высшего образования Российской Федерации
- •ВВЕДЕНИЕ
- •1. МЕХАНИКА И ТЕОРЕТИЧЕСКАЯ МЕХАНИКА
- •1.2 Сложение сил. Система сходящихся сил
- •1.3 Момент силы относительно центра. Пара сил
- •1.4 Приведение системы сил к центру. Условия равновесия
- •1.5 Плоская система сил
- •1.6 Трение
- •1.7 Пространственная система сил
- •1.8 Центр тяжести
- •2 КИНЕМАТИКА ТОЧКИ И ТВЕРДОГО ТЕЛА
- •2.1.2 Вектор скорости точки
- •2.1.3 Вектор ускорения точки
- •2.1.4 Определение скорости и ускорения при координатном задании движения
- •2.1.5 Примеры решения задач кинематики точки
- •2.1.6 Оси естественного трехгранника. Числовые значения скорости. Касательное и нормальное ускорение точки
- •2.1.7 Частные случаи движения точки
- •2.1.8 Графики движения, скорости и ускорения точки
- •2.1.9 Примеры решения задач
- •2.1.10 Скорость и ускорение точки в полярных координатах
- •2.2 Поступательное и вращательное движения твердого тела
- •2.2.1 Поступательное движение
- •2.2.2 Вращательное движение твердого тела вокруг оси. Угловая скорость и угловое ускорение
- •2.2.3 Равномерное и равнопеременное вращения
- •2.2.4 Скорости и ускорения точек вращающегося тела
- •2.3 Плоскопараллельное движение твердого тела
- •2.3.1 Уравнения плоскопараллельного движения. Разложение движения на поступательное и вращательное
- •2.3.2 Определение траекторий точек плоской фигуры
- •Рисунок 2.15 – К определению траекторий точек тела
- •Рисунок 2.16 – Схема эллипсографа
- •2.3.3 Скорости точек плоской фигуры
- •Рисунок 2.17 – Определение скорости точки на ободе колеса
- •2.3.4 Теорема о проекциях скоростей двух точек тела
- •Теорема
- •2.3.5 Определение скоростей точек плоской фигуры с помощью мгновенного центра скоростей. Центроиды
- •2.3.6 Ускорения точек плоской фигуры
- •Пример 1.
- •Рисунок 2.23 – К определению ускорений точек колеса
- •Пример 2.
- •Рисунок 2.24 – Задача о шестеренках
- •2.4 Движение твердого тела вокруг неподвижной точки и движение свободного твердого тела
- •2.4.2 Общий случай движения свободного твердого тела
- •2.5 Сложное движение точки
- •2.5.1 Относительное, переносное и абсолютное движения
- •2.5.2 Теорема о сложении скоростей
- •Пример 2.
- •2.5.3 Теорема о сложении ускорений (теорема Кориолиса)
- •2.6 Сложное движение твердого тела
- •2.6.1 Сложение поступательных движений
- •2.6.2 Сложение вращений вокруг двух параллельных осей
- •Рисунок 2.34 – Сложение однонаправленных параллельных вращений
- •2.6.3 Сложение вращений вокруг пересекающихся осей
- •Рисунок 2.36 – Сложение вращений вокруг пересекающихся осей
- •2.6.4 Сложение поступательного и вращательного движений. Винтовое движение
- •3 ДИНАМИКА
- •3.1 Введение в динамику. Законы динамики
- •3.2 Дифференциальные уравнения движения точки. Решение задач динамики точки
- •3.2.1 Основные соотношения
- •3.2.3 Последовательность и примеры решения задач
- •Пример 1.
- •Пример 2.
- •Пример 3
- •Рисунок 3.3 – Схема к задаче о движении лодки
- •3.2.4 Решение основной задачи динамики точки при криволинейном движении
- •Пример 1.
- •3.3 Общие теоремы динамики точки
- •3.3.1 Количество движения точки. Импульс силы
- •3.3.2 Теорема об изменении количества движения точки
- •Пример 1.
- •3.3.4 Движение под действием центральной силы. Закон площадей
- •3.3.5 Работа сил. Мощность
- •3.3.6 Примеры
- •3.3.7 Теорема об изменении кинетической энергии точки
- •Пример 1.
- •Пример 2.
- •3.4 Несвободное и относительное движения точки
- •3.4.1 Несвободное движение точки
- •Пример 1.
- •3.4.2 Относительное движение точки
- •3.5 Прямолинейные колебания точки
- •3.5.1 Свободные колебания без учета сил сопротивления
- •3.5.2 Свободные колебания при вязком сопротивлении
- •3.5.3 Вынужденные колебания. Резонанс
- •3.5.4 Вынужденные колебания при вязком сопротивлении
- •ЗАКЛЮЧЕНИЕ
- •СПИСОК ЛИТЕРАТУРЫ
- •ГЛОССАРИЙ

Если ϕ = const, то (2.26) представляют собой уравнения поступательного движения АТТ.
Если xA = const, yA = const, то (2.26) определяет вращение плоской фигуры вокруг точки А (или вращение АТТ вокруг оси, проходящей через точку А перпендикулярно плоскости этой плоской фигуры).
Таким образом, в общем случае движение плоской фигуры в ее плоскости слагается из поступательного движения полюса и вращения фигуры вокруг этого полюса.
Характеристиками плоского движения являются: скорость и ускорение поступательного движения полюса А и угловые скорость и ускорение вращательного движения вокруг этого полюса.
Все эти величины и определяются из уравнений движения (2.26). В качестве полюса можно выбрать любую точку фигуры. При этом
характеристики поступательного движения в общем случае изменятся (только в том случае, когда тело движется поступательно, изменение полюса не приведет к изменению уравнения его движения). Что касается вращательного движения, оно не меняется. Это усматривается из следующего рассуждения: если из точки С (нового полюса) провести
прямую CD AB, то эти прямые всегда параллельны. Но это и означает, что вращательное движение не зависит от выбора полюса.
2.3.2 Определение траекторий точек плоской фигуры
Рассмотрим точку М плоской фигуры, так что угол МАВ = α, а расстояние АМ = b (рисунок 2.15).
y |
x |
|
M |
|
|
|
|
||
|
|
|
B |
|
|
|
|
α |
|
|
xA A |
|
β |
|
|
yA |
|
|
|
O |
|
y |
|
|
|
|
|
||
|
|
|
|
|
Рисунок 2.15 – К определению траекторий точек тела |
||||
Для точки М: |
|
|
|
|
xM = xA +b cos(ϕ+α), |
yM = yA + b sin(ϕ+α). |
(2.27) |
||
В этих уравнениях величины xA, yA, ϕ известны из (2.26). По |
||||
существу, зависимости (2.27) |
|
и есть уравнение |
траектории в |
|
|
|
|
|
69 |