
- •1. Общая характеристика веществ в электронике
- •1.1 Электрические свойства веществ. Полупроводники
- •Электрические заряды в полупроводниках
- •Энергетические диаграммы
- •Электропроводность полупроводников
- •1.5 Токи в полупроводниках
- •1.6 Особенности примесных полупроводников
- •1.7 Расчёт концентрации подвижных носителей заряда
- •2. Общие свойства контактов веществ в электронике
- •2.1 Контакты и структуры в электронике
- •2.2 Контактная разность потенциалов
- •2.3 Собственные токи в контактах
- •2.4 Электроёмкость контактов
- •2.5 Электрический и тепловой пробой в контактах
- •3. Контакт металл – полупроводник. Диоды шотки
- •3.1. Основные свойства металло-полупроводниковых контактов
- •3.2. Диоды Шотки
- •4. Контакт полупроводников р- и n- типа
- •4.1. Основные свойства p-n перехода
- •4.2. Основные числовые характеристики p-n перехода.
- •4.3 Вольт-амперная характеристика p-n перехода
- •5. Диоды на основе m-n, p-n переходов
- •5.1 Мощный выпрямительный диод
- •5.2. Импульсные и высокочастотные диоды
- •5.3. Стабилитрон
- •5.4. Варикап
- •5.5. Диоды на основе p-I-n структуры
- •5.6. Свето- и фото-диоды. Солнечные батареи
- •6. Структура металл-диэлектрик-полупроводник.
- •6.1. Основные свойства мдп-структуры
- •6.3 Основные параметры мдп-транзистора
- •6.4. Статические характеристики мдп-транзистора
- •6.6. Арсенид-галлиевый полевой транзистор
- •7.1. Основные свойства биполярного транзистора
- •7.2. Биполярный транзистор в схеме с общей базой
- •7.3. Дрейфовый биполярный транзистор
- •7.3. Биполярный транзистор в схеме с общим эмиттером
- •7.4. Статические характеристики биполярного транзистора
- •8. Инерционные свойства мдп и биполярных транзисторов
- •8.1. Причины инерционности мдп и биполярных транзисторов
- •8.2 Импульсные свойства мдп и биполярных транзисторов
- •8.3 Частотные свойства мдп и биполярных транзисторов
- •9. Igbt транзистор
- •10. Контакт проводник - вакуум. Электронные лампы
- •11. Компьютерное моделирование электронных элементов
- •11.1. Компьютерная модель диода
- •11.2. Компьютерная модель транзистора
- •12. Шумы электронных приборов
9. Igbt транзистор
Большим достоинством МДП транзистора является способность сохранять открытое или закрытое состояние в отсутствие тока и мощности, потребляемых от источника управляющего сигнала. Напротив, БТ в открытом состоянии потребляет от источника сигнала ток базы Iб и, следовательно, некоторую мощность, иногда очень значительные.
Большим достоинством биполярного транзистора в ключевом режиме является на порядок меньшее падение напряжения на открытом и насыщенном транзисторе. Это означает, что тепловые потери в ключе на БТ значительно меньше, а максимальный допустимый ток значительно больше. Мощные ключи на БТ способны в открытом состоянии пропускать ток в сотни и даже тысячи ампер. Кроме того, они способны в закрытом состоянии выдерживать напряжение до нескольких тысяч вольт.
Указанными достоинствами одновременно обладает IGBT транзистор.
Устройство IGBT транзистора поясняет рис. 47,а. Здесь же показано
Рис. 47
его условное обозначение, подчёркивающее сходство с МДП транзисторами и БТ, рис. 47,б.
Структуру вида рис. 47,а в первом приближении можно рассматривать как сочетание n-канального МДП транзистора и БТ со структурой n+-p-n, рис. 47,в. Прилегающие к коллектору n+ и p+ слои являются вспомогательными и улучшают характеристики IGBT транзистора.
Основной ток в нём протекает в биполярной структуре, а управление этим током осуществляется, как в МДП транзисторе, с помощью изолированного затвора. Отсюда название транзистора - Insulated Gate Bipolar Transistor, т.е. биполярный транзистор с изолированным затвором.
10. Контакт проводник - вакуум. Электронные лампы
Проводник в вакууме также можно рассматривать как контакт двух веществ, точнее, двух сред. В таком контакте возникает явление термоэлектронной эмиссии.
Термоэлектронная эмиссия, в дальнейшем просто эмиссия, является результатом обычной для контактов диффузии свободных электронов из металла (где их много) в окружающий вакуум (где их нет). Эмиссия тем интенсивней, чем меньше работа выхода из металла и чем выше температура.
В простейшем электровакуумном приборе, диоде, вакуум создаётся в стеклянном, керамическом или металлическом баллоне. На условном обозначении диода он отображается кружком или овалом, рис. 48.
Рис. 48
Эмиссия возникает в контакте металла катода с окружающим вакуумом. При косвенном накале катод нагревается с помощью расположенной внутри него нити накала до нескольких сотен градусов, а при прямом накале ток проходит через катод и разогревает его. Для улучшения эмиссионных свойств или получения необходимого тока эмиссии Iэ подбирают специальный металл (иногда полупроводник) катода с минимальной работой выхода или покрывают его специальным составом.
На небольшом расстоянии от катода располагается второй электрод – анод. Если напряжение на аноде по отношению к катоду положительное, анод создаёт между катодом и анодом положительное электрическое поле. Это поле заставляет электроны двигаться от катода к аноду. Возникает анодный ток Iа. При отрицательном напряжении на аноде этого тока нет, так как эмиссия свободных электронов происходит только с катода, и конвекционный ток не протекает. Отсюда односторонняя проводимость, как и в диодах на основе m-n и p-n переходов.
В электровакуумном триоде (рис. 49) имеется ещё один электрод –
Рис. 49
управляющая сетка – сетчатый электрод, расположенный между катодом и анодом. Через просветы в сетке могут пролетать электроны. На управляющую сетку подаётся напряжение входного сигнала uвх и постоянное напряжение смещения от источника Ес. Суммарное напряжение на сетке uc = uвх + Ес, как правило, небольшое и отрицательное. При этом электроны не перехватываются сеткой и сеточного тока нет. В противном случае, при положительном uc, наблюдается захват сеткой части электронов из потока, идущего от катода к аноду. В результате появляется сеточный ток, растёт потребление мощности от источника сигнала, уменьшается коэффициент усиления по мощности. Уменьшается также полезный выходной ток Iа.
Расположение сетки, её «густота», величины сеточного и анодного напряжения таковы, что суммарное поле сетки и анода вблизи катода положительное и возникает значительный Iа. В то же время поле сетки сильно влияет на величину Iа т.к. она расположена намного ближе к катоду и эффективно управляет потоком электронов. В результате, из-за отсутствия или малости входного (сеточного) тока мощность источника сигнала ничтожна по сравнению с мощностью, выделяемой в нагрузке Рн = Iа2 ∙ Rн. Следовательно, лампа обладает большим коффициентом усиления по мощности.
С ростом отрицательного напряжения на сетке суммарное поле у катода ослабевает. Это вызывает уменьшение тока анода Iа. При достаточно большом отрицательном напряжении на сетке uC ток анода Iа исчезает (режим отсечки). Электрические свойства триода хорошо отражает семейство анодных характеристик – зависимостей Iа от Ua при различных напряжениях на управляющей сетке Eс. Типичное триода изображено На рис. 50 изображено семейство анодных характеристик пентода, у которого соединены электрически все три сетки.
По анодным
характеристикам хорошо видно, что
влияние сеточного
Рис. 50
напряжения на анодный ток намного сильнее, чем влияние анодного напряжения. Так, изменение напряжения на управляющей сетке с -3 В до -6 В при неизменном Ua = 100 В уменьшит Iа на 14 мА. В тоже время для изменения Iа на 4 мА потребуется приращение Δ Ua = 200 В.
Лампа с двумя сетками, т.е. с четырьмя электродами, называется тетрод, с тремя сетками – пентод. В таких лампах имеются дополнительные сетки, улучшающие электрические свойства.
Наряду со статическими
характеристиками для описания свойств
ламп используется следующие три
дифференциальных
(малосигнальных)
параметра. Это
крутизна анодно-сеточной характеристики
S
= dIа
/ dUc
, внутреннее
сопротивление
Ri
= dUа
/dIа,
коэффициент
усиления по напряжению
= dUа
/
dUc
.
Все три параметра определяются при
неизменности остальных токов и напряжений
[1]. Из приведённых формул следует:
= SRi (53)